A general three-dimensional frictional contact problem has been formulated in the form of a complementarity problem in an incremental analysis setting. The derivation is straightforward and very natural. It is shown that the complementarity problem for a three-dimensional case is inherently nonlinear, not like the two-dimensional problem where a linear complementarity problem formulation is possible. The two-dimensional case is a special case of the three-dimensional formulation. Approximate linear complementarity problems of the nonlinear complementarity problem by a Newton approach, or by introducing polyhedral law of friction, have been proposed for efficient numerical implementations.
机构:
Univ La Reunion, Inst Rech Math & Informat Appl, F-97715 St Denis Messag 9, FranceUniv La Reunion, Inst Rech Math & Informat Appl, F-97715 St Denis Messag 9, France
Addi, Khalid
Adly, Samir
论文数: 0引用数: 0
h-index: 0
机构:
Univ Limoges, UMR CNRS 6172, Inst XLIM, Dept Math Informat, F-87060 Limoges, FranceUniv La Reunion, Inst Rech Math & Informat Appl, F-97715 St Denis Messag 9, France
Adly, Samir
Goeleven, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ La Reunion, Inst Rech Math & Informat Appl, F-97715 St Denis Messag 9, FranceUniv La Reunion, Inst Rech Math & Informat Appl, F-97715 St Denis Messag 9, France
Goeleven, Daniel
Thera, Michel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Limoges, UMR CNRS 6172, Inst XLIM, Dept Math Informat, F-87060 Limoges, FranceUniv La Reunion, Inst Rech Math & Informat Appl, F-97715 St Denis Messag 9, France
机构:
Univ Craiova, Dept Math, AI Cuza St 13, Craiova 200585, RomaniaUniv Craiova, Dept Math, AI Cuza St 13, Craiova 200585, Romania
Matei, Andaluzia
Sofonea, Mircea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Perpignan, Lab Math & Phys, Via Domitia,52 Ave Paul Alduy, F-66860 Perpignan, FranceUniv Craiova, Dept Math, AI Cuza St 13, Craiova 200585, Romania