DUALITY IN NONCONVEX MULTIOBJECTIVE PROGRAMMING

被引:0
|
作者
GULATI, TR [1 ]
TALAAT, N [1 ]
机构
[1] UNIV ROORKEE,DEPT MATH,ROORKEE 247667,UTTAR PRADESH,INDIA
关键词
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A multiobjective programming problem is considered. Strong and converse duality theorems are established using Kuhn-Tucker and Fritz John type necessary conditions respectively. An application to a multiobjective fractional programming is discussed. These results subsume the duality theorems of Bector et al. [5].
引用
收藏
页码:62 / 69
页数:8
相关论文
共 50 条
  • [21] Ε-optimality and duality for multiobjective fractional programming
    Section of Mathematics, Natl. Overseas Chinese Student Univ., P.O. Box 1-1337, Linkou 24499, Taiwan
    不详
    Comput Math Appl, 8 (119-128):
  • [22] Conditions for zero duality gap of nonconvex programming
    Chen, JC
    Lai, HC
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XVI, PROCEEDINGS: COMPUTER SCIENCE III, 2002, : 1 - 6
  • [23] Duality Theorems for a Class of Nonconvex Programming Problems
    Rani, O.
    Kaul, R. N.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1973, 11 (03) : 305 - 308
  • [24] HIGHER ORDER DUALITY FOR A NEW CLASS OF NONCONVEX SEMI-INFINITE MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH SUPPORT FUNCTIONS
    Antezak, Tadeusz
    Shukla, Kalpana
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (06): : 2806 - 2825
  • [25] A Benson type algorithm for nonconvex multiobjective programming problems
    Nobakhtian, Soghra
    Shafiei, Narjes
    TOP, 2017, 25 (02) : 271 - 287
  • [26] A Benson type algorithm for nonconvex multiobjective programming problems
    Soghra Nobakhtian
    Narjes Shafiei
    TOP, 2017, 25 : 271 - 287
  • [27] Duality and Lagrange multipliers for nonsmooth multiobjective programming
    Zhou, Houchun
    Sun, Wenyu
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (03) : 369 - 383
  • [28] DUALITY IN PSEUDOLINEAR MULTIOBJECTIVE FRACTIONAL-PROGRAMMING
    KAUL, RN
    SUNEJA, SK
    LALITHA, CS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1993, 24 (05): : 279 - 290
  • [29] GENERALIZED CONCAVITY AND DUALITY IN MULTIOBJECTIVE NONSMOOTH PROGRAMMING
    BECTOR, CR
    BHATIA, D
    JAIN, P
    UTILITAS MATHEMATICA, 1993, 43 : 71 - 78
  • [30] Generalized invexity and duality in multiobjective nonlinear programming
    Laxminarayan Das
    Sudarsan Nanda
    Journal of Applied Mathematics and Computing, 2003, 11 (1-2) : 273 - 281