Influence of Solvent and Thickness Variation on the Performance of Poly(Vinylidene Fluoride-co-hexafluoropropylene) Polymer Membrane

被引:4
|
作者
Farooqui, Usaid Ur Rehman [1 ]
Ahmad, Abdul Latif [1 ]
Hameed, Noorashrina Abdul [1 ]
机构
[1] Univ Sains Malaysia, Sch Chem Engn, Engn Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia
关键词
PVDF-HFP membrane; solvent variation; thickness variation; poly(vinylidene fluoride; polymer membrane;
D O I
10.21315/jps2018.29.s1.16
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study involves the synthesis and characterisation of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer membrane by using breath figure method. The study was performed mainly to investigate the effect of solvent (acetone to NMP ratio of 100:0, 40:60, 50:50 and 60:40) and thickness (20 mu m, 25 mu m, 30 mu m and 40 mu m) variation on the performance of PVDF-HFP membrane. The different membrane samples were fabricated and characterised by different techniques such as scanning electron microscope (SEM), Fourier transform infrared (FTIR), porosity and mechanical strength. The mechanical stability of the membranes was mainly found to be thickness dependent, whereas the solvent variation has shown significant effect on the porosity, thickness and morphology of the prepared membranes. The highest porosity of 81.6% was obtained with acetone to NMP ratio of 40:60 compared to 53.4% of pure acetone based membrane. In addition, the 30-mu m thickness membrane was the second highest in mechanical strength compared to 40-mu m membrane; however, its highest porosity of 70.7% has given it an added advantage and makes it a strong choice to consider as a porous membrane for various applications.
引用
收藏
页码:125 / 132
页数:8
相关论文
共 50 条
  • [21] Preparation and characterization of titanium oxide based poly (vinylidene fluoride-co-hexafluoropropylene) polymer electrolyte films
    Narayanagari, Ramaiah
    Vukka, Raja
    Chekuri, Ramu
    JOURNAL OF POLYMER RESEARCH, 2021, 28 (01)
  • [22] Ionic conductivity and transport properties of poly(vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes
    Abreha, Merhawi
    Subrahmanyam, A. R.
    Kumar, J. Siva
    CHEMICAL PHYSICS LETTERS, 2016, 658 : 240 - 247
  • [23] An amorphous poly(vinylidene fluoride-co-hexafluoropropylene) based gel polymer electrolyte for magnesium ion battery
    Singh, Rupali
    Janakiraman, S.
    Agrawal, Ashutosh
    Ghosh, Sudipto
    Venimadhav, A.
    Biswas, K.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 858 (858)
  • [24] Foaming of poly(vinylidene fluoride-co-hexafluoropropylene) using supercritical carbon dioxide
    Tang, Muoi
    Wang, Tzu-Chi
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 73 : 146 - 153
  • [25] Ionic liquids for the control of the morphology in poly(vinylidene fluoride-co-hexafluoropropylene) membranes
    GSaiz, Paula
    Catarina Lopes, Ana
    Eizagirre Barker, Simone
    Fernandez de Luis, Roberto
    Isabel Arriortua, Maria
    MATERIALS & DESIGN, 2018, 155 : 325 - 333
  • [26] Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): Structure and properties
    Kelarakis, Antonios
    Hayrapetyan, Suren
    Ansari, Seema
    Fang, Jason
    Estevez, Luis
    Giannelis, Emmanuel P.
    POLYMER, 2010, 51 (02) : 469 - 474
  • [27] Solvent Casting Reprocessing of Poly(vinylidene fluoride-co-hexafluoropropylene)-Based Nanocomposite Sensors: An In-Depth Study on Recyclability and Performance
    Diaz-Mena, Victor
    Sanchez-Romate, Xoan Xose Fernandez
    Sanchez, Maria
    Urena, Alejandro
    ADVANCED SUSTAINABLE SYSTEMS, 2025,
  • [28] Preparation and characterization of titanium oxide based poly (vinylidene fluoride-co-hexafluoropropylene) polymer electrolyte films
    Ramaiah Narayanagari
    Raja Vukka
    Ramu Chekuri
    Journal of Polymer Research, 2021, 28
  • [29] White LED featuring remote phosphor with poly(vinylidene fluoride-co-hexafluoropropylene)
    Huang, Kuan-Chieh
    Lu, Wen-Jie
    Liao, Kuan-Yung
    Tsai, Tai-Cheng
    Lai, Teng-Hsien
    Sheu, Gwo-Jiun
    Li, Yun-Li
    MATERIALS LETTERS, 2014, 122 : 265 - 268
  • [30] Control of Nafion/Poly(vinylidene fluoride-co-hexafluoropropylene) Composite Membrane Microstructure to Improve Performance in Direct Methanol Fuel Cells
    Wei, X.
    Yates, M. Z.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) : B522 - B528