SOME FRACTIONAL HERMITE-HADAMARD INEQUALITIES FOR CONVEX AND GODUNOVA-LEVIN FUNCTIONS

被引:0
|
作者
Li, Mengmeng [1 ]
Wang, JinRong [1 ]
Wei, Wei [1 ]
机构
[1] Coll Sci, Dept Math, Guiyang 550025, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Hermite-Hadamard inequalities; Riemann-Liouville fractional integrals; fractional integral equalities; (s; m)-convex functions. equalities;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, two new integral equalities involving left-sided and right-sided Riemann-Liouville fractional integrals are established. Thereafter, some new fractional Hermite-Hadamard inequalities are presented by using the above fractional integral equalities and applying the concepts of s-and (s, m)-convex functions and s-and (s, m)Godunova-Levin functions. Some applications to special means of real numbers are given as well.
引用
收藏
页码:195 / 208
页数:14
相关论文
共 50 条
  • [1] Fractional Hermite-Hadamard Inequalities for some New Classes of Godunova-Levin Functions
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Awan, Muhammad Uzair
    Khan, Sundas
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (06): : 2865 - 2872
  • [3] HERMITE-HADAMARD TYPE INEQUALITIES FOR GENERALIZED (s, m, phi)-PREINVEX GODUNOVA-LEVIN FUNCTIONS
    Kashuri, Artion
    Liko, Rozana
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 683 - 700
  • [4] Fractional Hermite-Hadamard Inequalities for Differentiable s-Godunova-Levin Functions
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Mihai, Marcela V.
    Noor, Khalida Inayat
    FILOMAT, 2016, 30 (12) : 3235 - 3241
  • [5] HERMITE-HADAMARD TYPE INEQUALITIES FOR GENERALIZED (s, m, phi)-PREINVEX GODUNOVA-LEVIN FUNCTIONS
    Kashuri, Artion
    Liko, Rozana
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2018, 22 (534): : 63 - 75
  • [6] Uncertain Hermite-Hadamard inequality for functions with (s,m)-Godunova-Levin derivatives via fractional integral
    Avazpour, Ladan
    Allahviranloo, Tofigh
    Islam, Shafiqul
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 3333 - 3347
  • [7] SOME HADAMARD-TYPE INEQUALITIES FOR COORDINATED P-CONVEX FUNCTIONS AND GODUNOVA-LEVIN FUNCTIONS
    Akdemir, A. Ocak
    Ozdemir, M. Emin
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 7 - +
  • [8] Some New Fractional Hermite-Hadamard type Inequalities For Generalized Class of Godunova-Levin Functions By Means of Interval Center-Radius Order Relation with Applications
    Afzal, Waqar
    Khan, Mehreen S.
    Meetei, Mutum Zico
    Abbas, Mujahid
    Macias-Diaz, Jorge E.
    Vargas-Rodriguez, Hector
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 4014 - 4049
  • [9] Hermite-Hadamard and Jensen-Type Inequalities via Riemann Integral Operator for a Generalized Class of Godunova-Levin Functions
    Zhang, Xiaoju
    Shabbir, Khurram
    Afzal, Waqar
    Xiao, He
    Lin, Dong
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [10] On some fractional Hermite–Hadamard inequalities via s-convex and s-Godunova–Levin functions and their applications
    Gao Z.
    Li M.
    Wang J.R.
    Boletín de la Sociedad Matemática Mexicana, 2017, 23 (2) : 691 - 711