STATISTICALLY ISOTROPIC TENSOR RANDOM FIELDS: CORRELATION STRUCTURES

被引:14
|
作者
Malyarenko, Anatoliy [1 ]
Ostoja-Starzewski, Martin [2 ]
机构
[1] Malardalen Univ, Div Appl Math, Box 883,Hogskoleplan 1, SE-72123 Vasteras, Sweden
[2] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
isotropic tensor random field; group representation; Godunov-Gordienko coefficients;
D O I
10.2140/memocs.2014.2.209
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Let V be a real finite-dimensional vector space. We introduce some physical problems that may be described by V-valued homogeneous and isotropic random fields on R-3. We propose a general method for calculation of expectations and two-point correlation functions of such fields. Our results are equivalent to classical results by Robertson, when V = R-3, and those by Lomakin, when V is the space of symmetric second-rank tensors over R-3. Our solution involves an analogue of the classical Clebsch-Gordan coefficients.
引用
收藏
页码:209 / 231
页数:23
相关论文
共 50 条