Rayleigh-Benard Convection in a Dusty Newtonian Nanofluid With and Without Coriolis Force

被引:8
|
作者
Shalini, G. [1 ]
Mahanthesh, B. [1 ]
机构
[1] CHRIST Deemed Univ, Dept Math, Bangalore 560029, Karnataka, India
关键词
Nanofluid; Nanoparticles: Rayleigh-Benard Convection; Dust Particles; Rotation;
D O I
10.1166/jon.2018.1553
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Theoretical investigation of the Rayleigh-Benard convection (TRBC) in nanofluid (NF) submerged with dust particles is carried out. Convection in dusty nanofluid is considered between two horizontal free boundaries. Effect of nanoparticles shape is also accounted. The Saffmans' dusty fluid model is used to simulate the influence of dust particles, whereas the KVL (Khanafer-Vafai-Lightstone) model is employed to estimate the effective nanofluid properties. The fluid, dust particles and nanoparticles are in the thermal equilibrium state and move with the same velocity. The exact solutions are obtained using Normal Mode Analysis (NMA) method for two different cases namely (1) TRBC in dusty nanofluid (DNF) without Coriolis force (2) TRBC in DNF with Coriolis force. It is established that for the stationary convection, the effect of suspended particles hasten the onset of convection whereas the Coriolis force postpones the onset of convection.
引用
收藏
页码:1240 / 1246
页数:7
相关论文
共 50 条
  • [11] Multiphase Rayleigh-Benard convection
    Oresta, Paolo
    Fornarelli, Francesco
    Prosperetti, Andrea
    MECHANICAL ENGINEERING REVIEWS, 2014, 1 (01):
  • [12] Homogeneous rayleigh-benard convection
    Calzavarini, E.
    Lohse, D.
    Toschi, F.
    PROGRESS IN TURBULENCE II, 2007, 109 : 181 - +
  • [13] INTERMITTENCY IN RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    MANNEVILLE, P
    POMEAU, Y
    JOURNAL DE PHYSIQUE LETTRES, 1980, 41 (15): : L341 - L345
  • [14] Rayleigh-Benard convection in a newtonian liquid bounded by rigid isothermal boundaries
    Siddheshwar, P. G.
    Shivakumar, B. N.
    Zhao, Yi
    Kanchana, C.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 371
  • [15] Rayleigh-Benard Convection in a Nanofluid Layer Using a Thermal Nonequilibrium Model
    Agarwal, Shilpi
    Rana, Puneet
    Bhadauria, B. S.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2014, 136 (12):
  • [16] Effect of thermophoresis on natural convection in a Rayleigh-Benard cell filled with a nanofluid
    Eslamian, M.
    Ahmed, M.
    El-Dosoky, M. F.
    Saghir, M. Z.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 81 : 142 - 156
  • [17] Effect of the centrifugal force on domain chaos in Rayleigh-Benard convection
    Becker, Nathan
    Scheel, J. D.
    Cross, M. C.
    Ahlers, Guenter
    PHYSICAL REVIEW E, 2006, 73 (06):
  • [18] CRITICAL RAYLEIGH NUMBER IN RAYLEIGH-BENARD CONVECTION
    Guo, Yan
    Han, Yongqian
    QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (01) : 149 - 160
  • [19] NUMERICAL ANALYSIS OF RAYLEIGH-BENARD CONVECTION WITH AND WITHOUT VOLUMETRIC RADIATION
    Mishra, Subhash C.
    Akhtar, Adnan
    Garg, Anshul
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2014, 65 (02) : 144 - 164
  • [20] Rayleigh-Benard convection in rotating fluids
    Tagare, S. G.
    Babu, A. Benerji
    Rameshwar, Y.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (5-6) : 1168 - 1178