A NOTE ON SEMIDIRECT PRODUCT IN NEAR-RINGS

被引:0
|
作者
Cho, Yong Uk [1 ]
机构
[1] Silla Univ, Coll Educ, Dept Math, Pusan 617736, South Korea
关键词
zero symmetric part; con stant part; idempotent; semidirect product;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we begin by giving some properties of zero symmetric part and constant part in near-rings. We obtain some properties of semidirect product of near-rings. That is, for any near-ring (R, +, .), the group (R, +) is a semidirect product of a subgroup (R-0, +) by a subgroup (Rc, +). Next, we derive that for any idempotent e in R, the group (R, +) is a semidirect product of a normal subgroup (l(e), +) by a subgroup (Re, +).
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [31] MATRIX NEAR-RINGS
    MELDRUM, JDP
    VANDERWALT, APJ
    ARCHIV DER MATHEMATIK, 1986, 47 (04) : 312 - 319
  • [32] VALUATION NEAR-RINGS
    ZEMMER, JL
    MATHEMATISCHE ZEITSCHRIFT, 1973, 130 (02) : 175 - 188
  • [33] SEMIPRIME NEAR-RINGS
    DESTEFANO, S
    DISIENO, S
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1991, 51 : 88 - 94
  • [34] ON DIVISION NEAR-RINGS
    LIGH, S
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (06): : 1366 - &
  • [35] On regularities in near-rings
    Groenewald, NJ
    Olivier, WA
    ACTA MATHEMATICA HUNGARICA, 1997, 74 (03) : 177 - 190
  • [36] A RADICAL FOR NEAR-RINGS
    DESKINS, WE
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (04) : 360 - 360
  • [37] NEAR-RINGS OF QUOTIENTS
    OSWALD, A
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1979, 22 (JUN) : 77 - 86
  • [38] ON A CLASS OF NEAR-RINGS
    SANTHAKUMARI, C
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1982, 33 (OCT): : 167 - 170
  • [39] On Regularities in Near-Rings
    N. J. Groenewald
    W. A. Olivier
    Acta Mathematica Hungarica, 1997, 74 : 177 - 190
  • [40] ON NEAR-RINGS WITH ATM
    NIEMENMAA, M
    MONATSHEFTE FUR MATHEMATIK, 1984, 97 (02): : 133 - 139