共 50 条
ZERO SUMS OF IDEMPOTENTS IN BANACH-ALGEBRAS
被引:18
|作者:
BART, H
EHRHARDT, T
SILBERMANN, B
机构:
[1] ERASMUS UNIV ROTTERDAM,INST ECONOMET,3000 DR ROTTERDAM,NETHERLANDS
[2] TECH UNIV CHEMNITZ ZWICKAU,FACHBEREICH MATH,D-09009 CHEMNITZ,GERMANY
关键词:
16A38;
46H99;
Primary;
16A32;
Secondary;
45E05;
D O I:
10.1007/BF01206409
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The problem treated in this paper is the following. Let p1,...,p(k) be idempotents in a Banach algebra B, and assume P1+...+P(k)=0. Does it follow that p(j)=0, j=1,...,k? For important classes of Banach algebras the answer turns out to be positive; in general, however, it is negative. A counterexample is given involving five nonzero bounded projections on infinite-dimensional separable Hilbert space. The number five is critical here: in Banach algebras nontrivial zero sums of four idempotents are impossible. In a purely algebraic context (no norm), the situation is different. There the critical number is four.
引用
收藏
页码:125 / 134
页数:10
相关论文