ZERO SUMS OF IDEMPOTENTS IN BANACH-ALGEBRAS

被引:18
|
作者
BART, H
EHRHARDT, T
SILBERMANN, B
机构
[1] ERASMUS UNIV ROTTERDAM,INST ECONOMET,3000 DR ROTTERDAM,NETHERLANDS
[2] TECH UNIV CHEMNITZ ZWICKAU,FACHBEREICH MATH,D-09009 CHEMNITZ,GERMANY
关键词
16A38; 46H99; Primary; 16A32; Secondary; 45E05;
D O I
10.1007/BF01206409
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem treated in this paper is the following. Let p1,...,p(k) be idempotents in a Banach algebra B, and assume P1+...+P(k)=0. Does it follow that p(j)=0, j=1,...,k? For important classes of Banach algebras the answer turns out to be positive; in general, however, it is negative. A counterexample is given involving five nonzero bounded projections on infinite-dimensional separable Hilbert space. The number five is critical here: in Banach algebras nontrivial zero sums of four idempotents are impossible. In a purely algebraic context (no norm), the situation is different. There the critical number is four.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 50 条