OPTICAL ORTHOGONAL CODES - NEW BOUNDS AND AN OPTIMAL CONSTRUCTION

被引:156
|
作者
CHUNG, H [1 ]
KUMAR, PV [1 ]
机构
[1] UNIV SO CALIF,LOS ANGELES,CA 90089
关键词
D O I
10.1109/18.53748
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently Chung, Salehi, and Wei defined an (n, ω, λ)-optical orthogonal code (OOC) to be a family of (0, 1)-sequences of length n and constant Hamming-weight ω that have both out-of-phase autocorrelation and crosscorrelation values not exceedingλ. Such codes find application in optical code-division multiple-access communication systems. Most known optimal constructions have thus far been for the case λ= 1. A technique for constructing optimal OOC’s is presented that provides the only known family of optimal (with respect to family size) OOC’s having λ = 2. The parameters (n, ω, λ) are respectively (p2m— 1,pm+ 1,2), where p is any prime and the family size is pm-2. Three distinct upper bounds on the size of an OOC are presented that, for many values of the parameter set (n, ω, λ), improve upon the tightest previously known bound. © 1990 IEEE
引用
收藏
页码:866 / 873
页数:8
相关论文
共 50 条
  • [1] Optical orthogonal codes: Their bounds and new optimal constructions
    Fuji-Hara, R
    Miao, Y
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) : 2396 - 2406
  • [2] New Construction of Asymptotically Optimal Optical Orthogonal Codes
    Chung, Jin-Ho
    Yang, Kyeongcheol
    2015 IEEE INFORMATION THEORY WORKSHOP - FALL (ITW), 2015, : 129 - 132
  • [3] Construction for optimal optical orthogonal codes
    An, XQ
    Qiu, K
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 96 - 100
  • [4] Multilength Optical Orthogonal Codes: New Upper Bounds and Optimal Constructions
    Luo, Xizhao
    Yin, Jianxing
    Yue, Fei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (06) : 3305 - 3315
  • [5] A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets
    Ruiz, Hamilton M.
    Delgado, Luis M.
    Trujillo, Carlos A.
    IEEE ACCESS, 2020, 8 : 100749 - 100753
  • [6] The combinatorial construction for a class of optimal optical orthogonal codes
    Tang Yu
    Yin Jianxing
    Science in China Series A: Mathematics, 2002, 45 (10): : 1268 - 1275
  • [7] The combinatorial construction for a class of optimal optical orthogonal codes
    唐煜
    殷剑兴
    ScienceinChina,SerA., 2002, Ser.A.2002 (10) : 1268 - 1275
  • [8] The combinatorial construction for a class of optimal optical orthogonal codes
    Tang, Y
    Yin, JX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (10): : 1268 - 1275
  • [9] The combinatorial construction for a class of optimal optical orthogonal codes
    唐煜
    殷剑兴
    Science China Mathematics, 2002, (10) : 1268 - 1275
  • [10] A new recursive construction for optical orthogonal codes
    Chu, WS
    Golomb, SW
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (11) : 3072 - 3076