WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING FRACTIONAL CALCULUS OPERATORS

被引:0
|
作者
Iqbal, Sajid [1 ]
Pecaric, Josip [2 ]
Samraiz, Muhammad [3 ]
Tomovski, Zivorad [4 ]
机构
[1] Univ Sargodha, Dept Math, Subcampus Mianwali, Mianwali, Pakistan
[2] Univ Zagreb, Fac Text Technol, Zagreb, Croatia
[3] Univ Sargodha, Dept Math, Sargodha, Pakistan
[4] Fac Math & Nat Sci, Gazi Baba Bb, Skopje 1000, Macedonia
关键词
Inequalities; convex function; fractional derivatives; generalized fractional integral operator;
D O I
10.21857/ydkx2cr509
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to give a new class of general weighted Hardy-type inequalities involving an arbitrary convex function with some applications of generalized fractional calculus convolutive operators which contain Gauss-hypergeometric function, generalized Mittag-Leffler function and Hilfer fractional derivative operator, in the kernel.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 50 条
  • [21] Weighted inequalities for Hardy-type operators on the cone of decreasing functions in an Orlicz space
    Bakhtigareeva, E. G.
    Gol'dman, M. L.
    MATHEMATICAL NOTES, 2017, 102 (5-6) : 623 - 631
  • [22] WEIGHTED ITERATED DISCRETE HARDY-TYPE INEQUALITIES
    Omarbayeva, B. K.
    Persson, L-E
    Temirkhanova, A. M.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03): : 943 - 959
  • [23] Inequalities for Hardy-Type Operators on the Cone of Decreasing Functions in a Weighted Orlicz Space
    Bakhtigareeva, E. G.
    Gol'dman, M. L.
    DOKLADY MATHEMATICS, 2017, 96 (03) : 553 - 557
  • [24] ON WEIGHTED REMAINDER FORM OF HARDY-TYPE INEQUALITIES
    Gao, Peng
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (01): : 177 - 199
  • [25] ITERATED HARDY-TYPE INEQUALITIES INVOLVING SUPREMA
    Gogatishvili, Amiran
    Mustafayev, Rza Ch.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (04): : 901 - 927
  • [26] Weighted inequalities for Hardy-type operators on the cone of decreasing functions in an Orlicz space
    E. G. Bakhtigareeva
    M. L. Gol’dman
    Mathematical Notes, 2017, 102 : 623 - 631
  • [27] Inequalities for Hardy-type operators on the cone of decreasing functions in a weighted Orlicz space
    E. G. Bakhtigareeva
    M. L. Gol’dman
    Doklady Mathematics, 2017, 96 : 553 - 557
  • [28] Optimal Hardy-type inequalities for elliptic operators
    Devyver, Baptiste
    Fraas, Martin
    Pinchover, Yehuda
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (9-10) : 475 - 479
  • [29] HARDY-TYPE INEQUALITIES FOR AN EXTENSION OF THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATORS
    Iqbal, Sajid
    Farid, Ghulam
    Pecaric, Josip
    Kashuri, Artion
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 797 - 813
  • [30] Weighted Hardy-Type Operators on Nonincreasing Cones
    Sun, Qinxiu
    Li, Hongliang
    MATHEMATICAL NOTES, 2020, 107 (5-6) : 1002 - 1013