A Study on the Short Term Internet Traffic Forecasting Models on Long-Memory and Heteroscedasticity

被引:1
|
作者
Sohn, H. G. [1 ]
Kim, S. [1 ]
机构
[1] Chung Ang Univ, Dept Appl Stat, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
Fractional ARIMA; Fractional ARIMA-GARCH; internet traffic; forecasting; Bps;
D O I
10.5351/KJAS.2013.26.6.1053
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose the time series forecasting models for internet traffic with long memory and heteroscedasticity. To control and forecast traffic volume, we first introduce the traffic forecasting models which are determined by the volatility and heteroscedasticity of the traffic. We then analyze and predict the heteroscedasticity and the long memory properties for forecasting traffic volume. Depending on the characteristics of the traffic, Fractional ARIMA model, Fractional ARIMA-GARCH model are applied and compared with the MAPE(Mean Absolute Percentage Error) Criterion.
引用
收藏
页码:1053 / 1061
页数:9
相关论文
共 50 条
  • [41] Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting
    Rodriguez Rivero, Cristian
    Pucheta, Julian
    Patino, Daniel
    Luis Puglisi, Jose
    Otano, Paula
    Franco, Leonardo
    Juarez, Gustavo
    Gorrostieta, Efren
    David Orjuela-Canon, Alvaro
    APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI 2019, 2019, 1096 : 197 - 208
  • [42] Assessing influence in Gaussian long-memory models
    Palma, Wilfredo
    Bondon, Pascal
    Tapia, Jose
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (09) : 4487 - 4501
  • [43] Editorial: Long-Memory Models in Mathematical Finance
    Sottinen, Tommi
    Alos, Elisa
    Azmoodeh, Ehsan
    Di Nunno, Giulia
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2021, 7
  • [44] Explosive autoregressive models with long-memory noise
    Boutahar, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (10): : 889 - 892
  • [45] Peak Load Forecasting Based on Long Short Term Memory
    Ermatita
    Pahendra, Iwan
    Darnila, Eva
    Sadli, Muhammad
    Sinambela, Marzuki
    Fuadi, Wahyu
    2019 INTERNATIONAL CONFERENCE ON INFORMATICS, MULTIMEDIA, CYBER AND INFORMATION SYSTEM (ICIMCIS), 2019, : 137 - 139
  • [46] Testing the Market Efficiency in Crypto Currency Markets Using Long-Memory and Heteroscedasticity Tests
    Gulec, Tuna Can
    Aktas, Huseyin
    ESKISEHIR OSMANGAZI UNIVERSITESI IIBF DERGISI-ESKISEHIR OSMANGAZI UNIVERSITY JOURNAL OF ECONOMICS AND ADMINISTRATIVE SCIENCES, 2019, 14 (02): : 491 - 510
  • [47] Short-Term Traffic Forecasting Using Multivariate Autoregressive Models
    Pavlyuk, Dmitry
    PROCEEDINGS OF THE 16TH INTERNATIONAL SCIENTIFIC CONFERENCE RELIABILITY AND STATISTICS IN TRANSPORTATION AND COMMUNICATION (RELSTAT-2016), 2017, 178 : 57 - 66
  • [48] New Forecasting Metrics Evaluated in Prophet, Random Forest, and Long Short-Term Memory Models for Load Forecasting
    Manandhar, Prajowal
    Rafiq, Hasan
    Rodriguez-Ubinas, Edwin
    Palpanas, Themis
    ENERGIES, 2024, 17 (23)
  • [49] Short-Term Traffic Congestion Forecasting Using Attention-Based Long Short-Term Memory Recurrent Neural Network
    Zhang, Tianlin
    Liu, Ying
    Cui, Zhenyu
    Leng, Jiaxu
    Xie, Weihong
    Zhang, Liang
    COMPUTATIONAL SCIENCE - ICCS 2019, PT III, 2019, 11538 : 304 - 314
  • [50] Traffic monitoring using short - Long term background memory
    Guo, D
    Hwang, YC
    Adrian, YCL
    Laugier, C
    IEEE 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, PROCEEDINGS, 2002, : 124 - 129