QUANTIZATION OF GENERALIZED RARITA-SCHWINGER EQUATION

被引:0
|
作者
KIMURA, T
SENBA, K
机构
来源
PROGRESS OF THEORETICAL PHYSICS | 1969年 / 41卷 / 03期
关键词
D O I
10.1143/PTP.41.788
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:788 / &
相关论文
共 50 条
  • [31] Rarita-Schwinger Type Operators on Cylinders
    Junxia Li
    John Ryan
    Carmen Judith Vanegas
    Advances in Applied Clifford Algebras, 2012, 22 : 771 - 788
  • [32] RARITA-SCHWINGER FIELDS IN THE KERR GEOMETRY
    DELCASTILLO, GFT
    SILVAORTIGOZA, G
    PHYSICAL REVIEW D, 1990, 42 (12): : 4082 - 4086
  • [33] Manifolds with Many Rarita-Schwinger Fields
    Baer, Christian
    Mazzeo, Rafe
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (01) : 533 - 548
  • [34] Rarita-Schwinger Type Operators on Cylinders
    Li, Junxia
    Ryan, John
    Judith Vanegas, Carmen
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (03) : 771 - 788
  • [35] BHABHAS EQUATION FOR A PARTICLE OF 2 MASS STATES IN RARITA-SCHWINGER FORM
    GUPTA, KK
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 222 (1148): : 118 - 127
  • [36] Hermitian Generalization of the Rarita-Schwinger Operators
    Alberto DAMIANO
    David EELBODE
    Acta Mathematica Sinica(English Series), 2010, 26 (02) : 311 - 330
  • [37] Propagator of the interacting Rarita-Schwinger field
    Kaloshin, AE
    Lomov, VP
    MODERN PHYSICS LETTERS A, 2004, 19 (02) : 135 - 142
  • [39] Hermitian generalization of the Rarita-Schwinger operators
    Alberto Damiano
    David Eelbode
    Acta Mathematica Sinica, English Series, 2010, 26 : 311 - 330
  • [40] Pole skipping and Rarita-Schwinger fields
    Ceplak, Nejc
    Vegh, David
    PHYSICAL REVIEW D, 2021, 103 (10)