USING MEDICAL MALPRACTICE DATA TO PREDICT THE FREQUENCY OF CLAIMS - A STUDY OF POISSON-PROCESS MODELS WITH RANDOM EFFECTS

被引:24
|
作者
COOIL, B
机构
关键词
NEGATIVE BINOMIAL; NONHOMOGENEOUS POISSON PROCESS; PREDICTIVE DISTRIBUTION;
D O I
10.2307/2290560
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
I use the Florida state data base (1975-1987) of settled malpractice claims to develop Poisson process models for the frequency of claims field against individual physicians. These models incorporate random effects and covariates that represent physician attributes and are natural generalizations of the negative binomial model that is typically used to study claims frequency. I predict claims frequencies during 1981-1982 using models that are selected and estimated from claims data during 1975-1980 and then compare these predictions to the actual frequencies.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 50 条
  • [21] Pathway analysis for family data using nested random-effects models
    Jeanine J Houwing-Duistermaat
    Hae-Won Uh
    Roula Tsonaka
    BMC Proceedings, 5 (Suppl 9)
  • [22] Gene analysis for longitudinal family data using random-effects models
    Jeanine J Houwing-Duistermaat
    Quinta Helmer
    Bruna Balliu
    Erik van den Akker
    Roula Tsonaka
    Hae-Won Uh
    BMC Proceedings, 8 (Suppl 1)
  • [23] Profiling of county-level foster care placements using random-effects Poisson regression models
    Gibbons R.D.
    Hur K.
    Bhaumik D.K.
    Bell C.C.
    Health Services and Outcomes Research Methodology, 2007, 7 (3-4) : 97 - 108
  • [24] Prediction models for clustered data with informative priors for the random effects: a simulation study
    Haifang Ni
    Rolf H. H. Groenwold
    Mirjam Nielen
    Irene Klugkist
    BMC Medical Research Methodology, 18
  • [25] Prediction models for clustered data with informative priors for the random effects: a simulation study
    Ni, Haifang
    Groenwold, Rolf H. H.
    Nielen, Mirjam
    Klugkist, Irene
    BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
  • [26] Big data study using health insurance claims to predict multidisciplinary low vision service uptake
    Stolwijk, Miriam L.
    van Nispen, Ruth M. A.
    van der Pas, Stephanie L.
    van Rens, Ger H. M. B.
    OPTOMETRY AND VISION SCIENCE, 2024, 101 (06) : 290 - 297
  • [27] Disentangling the effects of capture efficiency and population abundance on catch data using random effects models
    Trenkel, VM
    Skaug, HJ
    ICES JOURNAL OF MARINE SCIENCE, 2005, 62 (08) : 1543 - 1555
  • [28] Using medical claims data and published literature to predict impact of formulary addition of a new anti-insomma agent.
    Ozminkowski, RJ
    Lenhart, G
    Wong, S
    Barry, N
    Rubens, R
    Schaefer, K
    Anderson, A
    Mucha, L
    PHARMACOTHERAPY, 2005, 25 (03): : 471 - 471
  • [29] Investigating factors of crash frequency with random effects and random parameters models: New insights from Chinese freeway study
    Hou, Qinzhong
    Tarko, Andrew P.
    Meng, Xianghai
    ACCIDENT ANALYSIS AND PREVENTION, 2018, 120 : 1 - 12
  • [30] Using deep learning with registry linked claims data to predict hospitalization during chemotherapy: Feasibility study.
    Panattoni, Laura Elizabeth
    Li, Li
    Fedorenko, Catherine R.
    Silgard, Emily
    White, Scott
    Rhine, Adam
    Kreizenbeck, Karma L.
    Egan, Kathryn
    Ittes, Annika
    Ramsey, Scott David
    JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (27)