RESONANCE PROPERTIES OF COMPLEX-ROTATED HAMILTONIANS

被引:378
|
作者
MOISEYEV, N [1 ]
CERTAIN, PR [1 ]
WEINHOLD, F [1 ]
机构
[1] UNIV WISCONSIN,DEPT CHEM,MADISON,WI 53706
关键词
D O I
10.1080/00268977800102631
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页码:1613 / 1630
页数:18
相关论文
共 50 条
  • [31] Matrix Hamiltonians with a chance of being complex symmetric
    Znojil, Miloslav
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 74 (01) : 5 - 6
  • [32] Effective Hamiltonians for resonance interaction dynamics and interdisciplinary analogies
    Pilipchuk, Valery N.
    IUTAM SYMPOSIUM ANALYTICAL METHODS IN NONLINEAR DYNAMICS, 2016, 19 : 27 - 34
  • [33] Sectorial Hamiltonians without zero resonance in one dimension
    Georgiev, Vladimir
    Giammetta, Anna Rita
    RECENT ADVANCES IN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 666 : 225 - 237
  • [34] STOCHASTICITY THRESHOLD FOR HAMILTONIANS WITH ZERO OR ONE PRIMARY RESONANCE
    CODACCIONI, JP
    DOVEIL, F
    ESCANDE, DF
    PHYSICAL REVIEW LETTERS, 1982, 49 (26) : 1879 - 1883
  • [35] Properties of modular Hamiltonians on entanglement plateaux
    Abt, Raimond
    Erdmenger, Johanna
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [36] Mixing Properties of Stochastic Quantum Hamiltonians
    E. Onorati
    O. Buerschaper
    M. Kliesch
    W. Brown
    A. H. Werner
    J. Eisert
    Communications in Mathematical Physics, 2017, 355 : 905 - 947
  • [37] Some properties of the reduced Hamiltonians and their applications
    Lim, T. K.
    CHEMICAL PHYSICS LETTERS, 1970, 4 (08) : 521 - 525
  • [38] Spectral Properties for Hamiltonians of Weak Interactions
    Barbaroux, Jean-Marie
    Faupin, Jeremy
    Guillot, Jean-Claude
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS, 2016, 254 : 11 - 36
  • [39] Transport Properties of Kicked and Quasiperiodic Hamiltonians
    S. De Bièvre
    G. Forni
    Journal of Statistical Physics, 1998, 90 : 1201 - 1223
  • [40] Transport properties of kicked and quasiperiodic Hamiltonians
    De Bievre, S
    Forni, G
    JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (5-6) : 1201 - 1223