SIMULTANEOUS APPROXIMATION BY HERMITE INTERPOLATION OF HIGHER-ORDER

被引:3
|
作者
DELLAVECCHIA, B
MASTROIANNI, G
VERTESI, P
机构
[1] CNR, IST APPLICAZ MATEMAT, I-80131 NAPLES, ITALY
[2] UNIV BASILICATA, IST MATEMAT, I-85100 POTENZA, ITALY
[3] HUNGARIAN ACAD SCI, INST MATH, H-1364 BUDAPEST, HUNGARY
关键词
HERMITE INTERPOLATION; JACOBI POLYNOMIALS; UNIFORM CONVERGENCE;
D O I
10.1016/0377-0427(94)90303-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors consider a procedure of Hermite interpolation of higher order based on the zeros of Jacobi polynomials plus the endpoints +/- 1 and prove that such a procedure can always well approximate a function and its derivatives simultaneously in uniform norm.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
  • [21] SOME HIGHER-ORDER METHODS FOR THE SIMULTANEOUS APPROXIMATION OF MULTIPLE POLYNOMIAL ZEROS
    PETKOVIC, MS
    MILOVANOVIC, GV
    STEFANOVIC, LV
    COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (09): : 951 - 962
  • [22] Higher-order Bernoulli, Euler and Hermite polynomials
    Kim, Dae San
    Kim, Taekyun
    Dolgy, Dmitry V.
    Rim, Seog-Hoon
    ADVANCES IN DIFFERENCE EQUATIONS, 2013, : 1 - 7
  • [23] Higher-order Bernoulli, Euler and Hermite polynomials
    Dae San Kim
    Taekyun Kim
    Dmitry V Dolgy
    Seog-Hoon Rim
    Advances in Difference Equations, 2013
  • [24] THE PRINCIPLES OF INTERPOLATION FOR HIGHER-ORDER CURVES
    LI, EL
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1982, 25 (02): : 212 - 224
  • [25] Hermite-Fejer type interpolation of higher order
    Wang Q.
    Wang S.
    Applied Mathematics-A Journal of Chinese Universities, 1999, 14 (3) : 273 - 282
  • [26] Simultaneous Approximation of Sobolev Classes by Piecewise Cubic Hermite Interpolation
    Xu, Guiqiao
    Zhang, Zheng
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2014, 7 (03) : 317 - 333
  • [27] Convergence of Hermite and Hermite-Fejer interpolation of higher order for Freud weights
    Damelin, SB
    Jung, HS
    Kwon, KH
    JOURNAL OF APPROXIMATION THEORY, 2001, 113 (01) : 21 - 58
  • [28] Exact order of pointwise estimates for polynomial approximation with Hermite interpolation
    Kopotun, Ka
    Leviatan, D.
    Shevchuk, I. A.
    JOURNAL OF APPROXIMATION THEORY, 2021, 264
  • [29] CONVERGENCE OF THE DERIVATIVES OF HERMITE-FEJER INTERPOLATION POLYNOMIALS OF HIGHER-ORDER BASED AT THE ZEROS OF FREUD POLYNOMIALS
    KANJIN, Y
    SAKAI, R
    JOURNAL OF APPROXIMATION THEORY, 1995, 80 (03) : 378 - 389
  • [30] Contextual Approximation and Higher-Order Procedures
    Lazic, Ranko
    Murawski, Andrzej S.
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES (FOSSACS 2016), 2016, 9634 : 162 - 179