GENERALIZED MARKOV COARSE GRAINING AND SPECTRAL DECOMPOSITIONS OF CHAOTIC PIECEWISE-LINEAR MAPS

被引:28
|
作者
MACKERNAN, D [1 ]
NICOLIS, G [1 ]
机构
[1] UNIV LIBRE BRUXELLES,CTR NONLINEAR PHENOMENA & COMPLEX SYST,B-1050 BRUSSELS,BELGIUM
来源
PHYSICAL REVIEW E | 1994年 / 50卷 / 02期
关键词
D O I
10.1103/PhysRevE.50.988
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Spectral decompositions of the evolution operator for probability densities are obtained for the most general one-dimensional piecewise linear Markov maps and a large class of repellers. The eigenvalues obtained with respect to the space of functions piecewise analytic over the minimal Markov partition equal the reciprocals of the zeros of the Ruelle zeta functions. The logarithms of the zeros correspond to the decay rates of time correlation functions of analytic observables when the system is mixing. The space can also be extended to include piecewise analytic observables permitted to have discontinuities at the elements of any given periodic orbit(s), so that local behavior of observables can be considered. The new spectra associated with the extension are surprisingly simple and are related to the relative stability factors of the given orbit(s). Finally, arbitrarily slowly decaying periodic and aperiodic nonanalytic eigenmodes are constructed.
引用
收藏
页码:988 / 999
页数:12
相关论文
共 50 条
  • [21] Correlation and spectral properties of chaotic signals generated by a piecewise-linear map with multiple segments
    da Costa, Rafael Alves
    Loiola, Murilo Bellezoni
    Eisencraft, Marcio
    SIGNAL PROCESSING, 2017, 133 : 187 - 191
  • [22] Feedback synchronization of new piecewise-linear chaotic system
    Shan, Liang
    Li, Jun
    Wang, Zhi-Quan
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2007, 31 (03): : 265 - 269
  • [24] Asymptotic analysis of a new piecewise-linear chaotic system
    Aziz-Alaoui, MA
    Chen, GR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (01): : 147 - 157
  • [25] Synthesis of piecewise-linear chaotic oscillators with prescribed eigenvalues
    Scanlan, SO
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (09): : 1057 - 1064
  • [26] THE PIECEWISE-LINEAR LORENZ CIRCUIT IS CHAOTIC IN THE SENSE OF SHILNIKOV
    TOKUNAGA, R
    MATSUMOTO, T
    CHUA, LO
    MIYAMA, S
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (06): : 766 - 786
  • [27] CONTRIBUTION TO THEORY OF PIECEWISE-LINEAR MARKOV-PROCESSES
    GILLERT, H
    MATHEMATISCHE NACHRICHTEN, 1975, 70 : 99 - 110
  • [28] Piecewise-linear chaotic systems with a single equilibrium point
    Yang, T
    Chua, LO
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (09): : 2015 - 2060
  • [29] ERGODIC PROPERTIES OF PIECEWISE-LINEAR MAPS ON FRACTAL REPELLERS
    TASAKI, S
    SUCHANECKI, Z
    ANTONIOU, I
    PHYSICS LETTERS A, 1993, 179 (02) : 103 - 110
  • [30] Prior distribution elicitation for generalized linear and piecewise-linear models
    Garthwaite, Paul H.
    Al-Awadhi, Shafeeqah A.
    Elfadaly, Fadlalla G.
    Jenkinson, David J.
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (01) : 59 - 75