SYMPLECTIC RUNGE-KUTTA AND RELATED METHODS - RECENT RESULTS

被引:36
|
作者
SANZSERNA, JM
机构
[1] Departamento de Matemática Aplicada y Computación, Facultad de Ciencias, Universidad de Valladolid, Valladolid
关键词
D O I
10.1016/0167-2789(92)90245-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Symplectic algorithms are numerical integrators for Hamiltonian systems that preserve the symplectic structure in phase space. In long time integrations these algorithms tend to perform better than their nonsymplectic counterparts. Some symplectic algorithms are derived by explicitly finding a generating function. Other symplectic algorithms are members of standard families of methods, such as Runge-Kutta methods, that just turn out to preserve the symplectic structure. Here we survey what is known about the second type of symplectic algorithms.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 50 条
  • [1] Efficient symplectic Runge-Kutta methods
    Chan, RPK
    Liu, HY
    Sun, G
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 908 - 924
  • [2] SYMPLECTIC PARTITIONED RUNGE-KUTTA METHODS
    SUN, G
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1993, 11 (04): : 365 - 372
  • [3] SYMPLECTIC RUNGE-KUTTA METHODS WITH REAL EIGENVALUES
    HAIRER, E
    WANNER, G
    BIT, 1994, 34 (02): : 310 - 312
  • [4] Symplectic properties of multistep Runge-Kutta methods
    Xiao, AG
    Tang, YF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (10-11) : 1329 - 1338
  • [5] A new implementation of symplectic Runge-Kutta methods
    Mclachlan, Robert I.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (04): : 1637 - 1649
  • [6] A class of symplectic partitioned Runge-Kutta methods
    Gan, Siqing
    Shang, Zaijiu
    Sun, Geng
    APPLIED MATHEMATICS LETTERS, 2013, 26 (09) : 968 - 973
  • [7] Pseudo-symplectic Runge-Kutta methods
    A. Aubry
    P. Chartier
    BIT Numerical Mathematics, 1998, 38 : 439 - 461
  • [8] Symplectic Partitioned Runge-Kutta And Symplectic Runge-Kutta Methods Generated By 2-Stage RadauIA Method
    Tan, Jiabo
    ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 633 - 636
  • [9] Symplectic Partitioned Runge-Kutta And Symplectic Runge-Kutta Methods Generated By 2-Stage LobattoIIIA Method
    Tan, Jiabo
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES (ICCIS 2014), 2014, : 1069 - 1073
  • [10] Pseudo-symplectic Runge-Kutta methods
    Aubry, A
    Chartier, P
    BIT, 1998, 38 (03): : 439 - 461