2 PROPERTIES OF GROEBNER BASES

被引:0
|
作者
CHMUTOV, SV [1 ]
机构
[1] RUSSIAN ACAD SCI,INST SOFTWARE,MOSCOW,RUSSIA
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Groebner basis is one of the fundamental objects of computer algebra. It is a rather remarkable basis for an ideal in a ring of polynomials. This article describes two transformations that transform Groebner bases into Groebner bases. A mapping onto the leading homogeneous part of a polynomial is a special case of such transformations.
引用
收藏
页码:232 / 233
页数:2
相关论文
共 50 条
  • [21] Synthesis of nonlinear oscillators using Groebner bases
    Berns, D
    Calandrini, G
    Paolini, E
    Moiola, J
    PROCEEDINGS OF THE 2001 WORKSHOP ON NONLINEAR DYNAMICS OF ELECTRONIC SYSTEMS, 2001, : 85 - 88
  • [22] A Note on Groebner Bases and Integration of Rational Functions
    Czichowski, G.
    Journal of Symbolic Computation, 20 (02):
  • [23] Identifying Block Codes using Groebner Bases
    Vijayakumaran, Saravanan
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2015, : 4424 - 4430
  • [24] GROEBNER BASES AND NONEMBEDDINGS OF SOME FLAG MANIFOLDS
    Petrovic, Zoran Z.
    Prvulovic, Branislav I.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 96 (03) : 338 - 353
  • [25] Reachability analyses in Petri nets by Groebner bases
    Matsumoto, T
    Takata, M
    Moro, S
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 841 - 846
  • [26] Application of Groebner bases techniques for searching new sequences with good periodic correlation properties
    Shorin, VV
    Loidreau, P
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 1196 - 1200
  • [27] Mechanical geometry theorem proving based on groebner bases
    Jinzhao Wu
    Journal of Computer Science and Technology, 1997, 12 (1) : 10 - 16
  • [28] Groebner bases and the cohomology of Grassmann manifolds with application to immersion
    Monks, KG
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2001, 7 (01): : 123 - 136
  • [29] Design of instrumentation in process plants using Groebner bases
    Wailly, Olivier
    Heraud, Nicolas
    Malasse, Olaf
    COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (10) : 2179 - 2188
  • [30] Periodic solutions of a quartic differential equation and Groebner bases
    Alwash, MAM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 75 (01) : 67 - 76