Sampling-Based Methods for Motion Planning with Constraints

被引:117
|
作者
Kingston, Zachary [1 ]
Moll, Mark [1 ]
Kavraki, Lydia E. [1 ]
机构
[1] Rice Univ, Dept Comp Sci, Houston, TX 77005 USA
关键词
robotics; robot motion planning; sampling-based planning; constraints; planning with constraints; planning for high-dimensional robotic systems;
D O I
10.1146/annurev-control-060117-105226
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robots with many degrees of freedom (e.g., humanoid robots and mobile manipulators) have increasingly been employed to accomplish realistic tasks in domains such as disaster relief, spacecraft logistics, and home caretaking. Finding feasible motions for these robots autonomously is essential for their operation. Sampling-based motion planning algorithms are effective for these high-dimensional systems; however, incorporating task constraints (e.g., keeping a cup level or writing on a board) into the planning process introduces significant challenges. This survey describes the families of methods for sampling-based planning with constraints and places them on a spectrum delineated by their complexity. Constrained sampling-based methods are based on two core primitive operations: (a) sampling constraint-satisfying configurations and (b) generating constraint-satisfying continuous motion. Although this article presents the basics of sampling-based planning for contextual background, it focuses on the representation of constraints and sampling-based planners that incorporate constraints.
引用
收藏
页码:159 / 185
页数:27
相关论文
共 50 条
  • [11] Optimal Kinodynamic Motion Planning using Incremental Sampling-based Methods
    Karaman, Sertac
    Frazzoli, Emilio
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 7681 - 7687
  • [12] Sampling-based algorithms for optimal motion planning
    Karaman, Sertac
    Frazzoli, Emilio
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (07): : 846 - 894
  • [13] An Effort Bias for Sampling-based Motion Planning
    Kiesel, Scott
    Gu, Tianyi
    Ruml, Wheeler
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2864 - 2871
  • [14] Sampling-based Motion Planning with Temporal Goals
    Bhatia, Amit
    Kavraki, Lydia E.
    Vardi, Moshe Y.
    2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 2689 - 2696
  • [15] Current issues in sampling-based motion planning
    Lindemann, SR
    LaValle, SM
    ROBOTICS RESEARCH, 2005, 15 : 36 - 54
  • [16] Sampling-Based Motion Planning: A Comparative Review
    Orthey, Andreas
    Chamzas, Constantinos
    Kavraki, Lydia E.
    ANNUAL REVIEW OF CONTROL ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 7 : 285 - 310
  • [17] The Critical Radius in Sampling-based Motion Planning
    Solovey, Kiril
    Kleinbort, Michal
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [18] Custom distribution for sampling-based motion planning
    Flores-Aquino, Gabriel O.
    Irving Vasquez-Gomez, J.
    Gutierrez-Frias, Octavio
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (03)
  • [19] Sampling-Based Robot Motion Planning: A Review
    Elbanhawi, Mohamed
    Simic, Milan
    IEEE ACCESS, 2014, 2 : 56 - 77
  • [20] Sampling-Based Motion Planning on Sequenced Manifolds
    Englert, Peter
    Fernandez, Isabel M. Rayas
    Ramachandran, Ragesh K.
    Sukhatme, Gaurav S.
    ROBOTICS: SCIENCE AND SYSTEM XVII, 2021,