ON SOME NEW HADAMARD-LIKE INEQUALITIES FOR COORDINATED s-CONVEX FUNCTIONS

被引:0
|
作者
Ozdemir, M. Emin [1 ]
Tunc, Mevlut [2 ]
Akdemir, Ahmet Ocak [3 ]
机构
[1] Ataturk Univ, KK Educ Fac, Dept Math, TR-25240 Erzurum, Turkey
[2] Univ Kilis 7 Aralik, Fac Sci & Arts, Dept Math, TR-79000 Kilis, Turkey
[3] Ibrahim Cecen Univ Agri, Fac Sci & Arts, Dept Math, TR-04100 Agri, Turkey
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove some new integral inequalities of Hadamard-like type for s-convex functions in the second sense on the co-ordinates.
引用
收藏
页码:297 / 321
页数:25
相关论文
共 50 条
  • [41] On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates
    Ozdemir, Muhamet Emin
    Latif, Muhammad Amer
    Akdemir, Ahmet Ocak
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012, : 1 - 13
  • [42] On some fractional Hermite–Hadamard inequalities via s-convex and s-Godunova–Levin functions and their applications
    Gao Z.
    Li M.
    Wang J.R.
    Boletín de la Sociedad Matemática Mexicana, 2017, 23 (2) : 691 - 711
  • [43] On new inequalities of Simpson's type for s-convex functions
    Sarikaya, Mehmet Zeki
    Set, Erhan
    Ozdemir, M. Emin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (08) : 2191 - 2199
  • [44] Hadamard and Jensen inequalities for s-convex puzzy processes
    Osuna-Gómez, R
    Jiménez-Gamero, MD
    Chalco-Cano, Y
    Rojas-Medar, MA
    SOFT METHODOLOGY AND RANDOM INFORMATION SYSTEMS, 2004, : 645 - 652
  • [45] New inequalities of Steffensen's type for s-convex functions
    Alomari, Mohammad W.
    AFRIKA MATEMATIKA, 2014, 25 (04) : 1053 - 1062
  • [46] On New Inequalities of Hermite Hadamard Type for Functions Whose Second Derivatives in Absolute Value Are s-Convex
    Set, Erhan
    Korkut, Necla
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [47] New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications
    Avci, Merve
    Kavurmaci, Havva
    Ozdemir, M. Emin
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5171 - 5176
  • [49] Some generalized Hermite-Hadamard type integral inequalities for generalized s-convex functions on fractal sets
    Kilicman, Adem
    Saleh, Wedad
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [50] An extension of the Hermite–Hadamard inequality for convex and s-convex functions
    Péter Kórus
    Aequationes mathematicae, 2019, 93 : 527 - 534