AN EXISTENCE RESULT FOR A CLASS OF SHAPE OPTIMIZATION PROBLEMS

被引:135
|
作者
BUTTAZZO, G [1 ]
DALMASO, G [1 ]
机构
[1] SISSA,I-34014 TRIESTE,ITALY
关键词
D O I
10.1007/BF00378167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a bounded open subset OMEGA of R(n), we prove the existence of a minimum point for a functional F defined on the family A(OMEGA) of all ''quasi-open'' subsets of OMEGA, under the assumption that F is decreasing with respect to set inclusion and that F is lower semicontinuous on A(OMEGA) with respect to a suitable topology, related to the resolvents of the Laplace operator with Dirichlet boundary condition. Applications are given to the existence of sets of prescribed volume with minimal k(th) eigenvalue (or with minimal capacity) with respect to a given elliptic operator.
引用
收藏
页码:183 / 195
页数:13
相关论文
共 50 条
  • [41] An existence result for a class of nonlocal infinite semipositone problem
    H. Zahmatkesh
    S. Shakeri
    A. Hadjian
    Boletín de la Sociedad Matemática Mexicana, 2021, 27
  • [42] Existence result of solutions for a class of nonlinear differential systems
    Mesbahi, Salim
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 1 - 10
  • [43] A global existence and uniqueness result for a class of hyperbolic operators
    Barbagallo A.
    Esposito V.
    Ricerche di Matematica, 2014, 63 (Suppl 1) : 25 - 40
  • [44] An existence result for a class of nonlocal infinite semipositone problem
    Zahmatkesh, H.
    Shakeri, S.
    Hadjian, A.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (03):
  • [45] Shape optimization in problems governed by generalised Navier-Stokes equations:: existence analysis
    Haslinger, J
    Málek, J
    Stebel, J
    CONTROL AND CYBERNETICS, 2005, 34 (01): : 283 - 303
  • [46] How to prove existence in shape optimization
    Bucur, D
    CONTROL AND CYBERNETICS, 2005, 34 (01): : 103 - 116
  • [47] Existence and stability of the optimum in shape optimization
    Z Angew Math Mech ZAMM, Suppl 2 (77):
  • [48] Existence and stability of the optimum in shape optimization
    Bucur, D
    Zolesio, JP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 77 - 80
  • [50] Existence for a class of discrete hyperbolic problems
    Rodica Luca
    Advances in Difference Equations, 2006