共 50 条
- [21] Determining Bounds on the Values of Parameters for a Function f(m,a)(z)=∑k=0∞zkak2(k!)m,m∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{(m,a)}(z) =\sum _{k=0}^\infty \frac{z^k}{a^{k^2}}(k!)^{m}, {m} \in (0,1),$$\end{document} to Belong to the Laguerre–Pólya Class Computational Methods and Function Theory, 2018, 18 (1) : 35 - 51
- [22] The Lp1r1×Lp2r2×…×Lpkrk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p_{1} r_{1}}\times L_{p_{2} r_{2}}\times\dots\times L_{p_{k}r_{k}}$\end{document} boundedness of rough multilinear fractional integral operators in the Lorentz spaces Journal of Inequalities and Applications, 2015 (1)
- [23] Finite Generation and Holomorphic Anomaly Equation for Equivariant Gromov—Witten Invariants of Kℙ1×ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K_{{\mathbb{P}^1} \times {\mathbb{P}^1}}}$$\end{document} Frontiers of Mathematics, 2023, 18 (1): : 17 - 46
- [25] On integers 2(p + ia) not of the form ak+ϕ(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a^k + \phi(m)}$$\end{document} Acta Mathematica Hungarica, 2015, 146 (2) : 332 - 340
- [26] Equivalence of K-functionals and moduli of smoothness generated by the Beltrami-Laplace operator on the spaces S(p,q)(σm-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{(p,q)}(\sigma ^{m-1})$$\end{document} Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 (1): : 445 - 458
- [27] On the solutions of the Diophantine equation Pn±a(10m-1)9=k!\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n\pm \frac{a(10^m-1)}{9}=k!$$\end{document} European Journal of Mathematics, 2023, 9 (2)
- [28] On units in loop algebra F[M(Dih(Cp2),2)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F[M(Dih(C_p^2),2)]$$\end{document} Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (4): : 765 - 774
- [29] Antimagic Labeling of the Lexicographic Product Graph Km,n[Pk]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{m,n}[P_k]$$\end{document} Mathematics in Computer Science, 2018, 12 (1) : 77 - 90
- [30] On the characterization of Hankel-K{Mp}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\{M_p\}$$\end{document} spaces in terms of the Zemanian differential operatorCharacterizing Hankel-K{Mp}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\{M_p\}$$\end{document} spaces in terms of the Zemanian...S. García-Baquerín and I. Marrero Annals of Functional Analysis, 2025, 16 (1)