UNSTABLE PARTICLES IN FINITE VOLUME - THE BROKEN PHASE OF THE 4-D O(4) NONLINEAR SIGMA-MODEL

被引:8
|
作者
ZIMMERMANN, F
WESTPHALEN, J
GOCKELER, M
KASTRUP, HA
机构
[1] RHEIN WESTFAL TH AACHEN, INST THEORET PHYS E, W-5100 AACHEN, GERMANY
[2] FORSCHUNGSZENTRUM JULICH, HLRZ, W-5170 JULICH 1, GERMANY
关键词
D O I
10.1016/0920-5632(93)90347-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
According to a proposal of Luscher it is possible to determine elastic scattering phases in infinite volume from the energy spectrum of two-particle states in a periodic box. We demonstrate the applicability of this method in the broken phase of the 4-dimensional O(4) non-linear sigma-model in a Monte-Carlo study on finite lattices. This non-perturbative approach also permits the study of unstable particles, the sigma-particle in our case. We observe the sigma-resonance and extract its mass and its width.
引用
收藏
页码:879 / 882
页数:4
相关论文
共 50 条
  • [41] Embedding nonlinear O(6) sigma model into N=4 super-Yang-Mills theory
    Basso, B.
    Korchemsky, G. P.
    NUCLEAR PHYSICS B, 2009, 807 (03) : 397 - 423
  • [42] THE CRITICAL O(N) SIGMA-MODEL AT DIMENSION 2-LESS-THAN-D-LESS-THAN-4 AND ORDER 1/N(2) - OPERATOR PRODUCT EXPANSIONS AND RENORMALIZATION
    LANG, K
    RUHL, W
    NUCLEAR PHYSICS B, 1992, 377 (1-2) : 371 - 401
  • [43] AN INVESTIGATION OF THE PHASE-STRUCTURE OF THE TWO-DIMENSIONAL O(2) AND O(4) SYMMETRIC NONLINEAR SIGMA-MODELS
    BERNREUTHER, W
    GOCKELER, M
    PHYSICS LETTERS B, 1988, 214 (01) : 109 - 114
  • [44] Feasibility of Prediction Model for Internal Tumor Target Volume from 4-D Computed Tomography of Lung cancer
    Puangragsa, Utumporn
    Lomvisai, Pitchayakorn
    Phasukkit, Pattarapong
    Puangragsa, Sarut
    Setakornnukul, Jiraporn
    Houngkamhang, Nongluck
    Thongserm, Petchanon
    Dankulchai, Pittaya
    16TH INTERNATIONAL JOINT SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND NATURAL LANGUAGE PROCESSING (ISAI-NLP 2021), 2021,
  • [45] A dual-weighted trust-region adaptive POD 4-D Var applied to a finite-volume shallow water equations model on the sphere
    Chen, X.
    Akella, S.
    Navon, I. M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 68 (03) : 377 - 402
  • [46] Finite-size corrections to the correlation function of the spherical model at d o 4
    Allen, S.
    Pathria, R. K.
    Physics Reports, 1996, 265 (1-2):
  • [47] BROKEN PHASE OF THE O(N) PHI(4) MODEL IN LIGHT-CONE QUANTIZATION AND 1/N EXPANSION
    BORDERIES, A
    GRANGE, P
    WERNER, E
    PHYSICS LETTERS B, 1995, 345 (04) : 458 - 468
  • [49] Quantum phase transition of (1+1)-dimensional O(3) nonlinear sigma model at finite density with tensor renormalization group
    Luo, Xiao
    Kuramashi, Yoshinobu
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (11):
  • [50] Momentum dependence of the spectral functions in the O(4) linear sigma model at finite temperature -: art. no. 056004
    Hidaka, Y
    Morimatsu, O
    Nishikawa, T
    PHYSICAL REVIEW D, 2003, 67 (05):