VARIATIONAL PROBLEM FOR SUBMANIFOLDS OF EUCLIDEAN SPACE

被引:0
|
作者
ERBACHER, JA
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:967 / &
相关论文
共 50 条
  • [21] Uniqueness of minimal submanifolds in euclidean space
    Qing, C
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (05) : 413 - 418
  • [22] ON THE CURVATURE OF SUBMANIFOLDS OF A EUCLIDEAN-SPACE
    MAILLOT, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (13): : 651 - 654
  • [23] A variational problem for submanifolds in a sphere
    Guo, Zhen
    Li, Haizhong
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (04): : 295 - 302
  • [24] A variational problem for submanifolds in a sphere
    Zhen Guo
    Haizhong Li
    Monatshefte für Mathematik, 2007, 152 : 295 - 302
  • [25] A gap theorem for minimal submanifolds in Euclidean space
    Zhao, Entao
    Cao, Shunjuan
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (02) : 173 - 177
  • [26] On the Affine Gauss Maps of Submanifolds of Euclidean Space
    Henri Anciaux
    Pierre Bayard
    Bulletin of the Brazilian Mathematical Society, New Series, 2019, 50 : 137 - 165
  • [27] On caustics of submanifolds and canal hypersurfaces in Euclidean space
    Izumiya, Shyuichi
    Takahashi, Masatomo
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (02) : 501 - 508
  • [28] Submanifolds of positive Ricci curvature in a Euclidean space
    Deshmukh, Sharief
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (01) : 59 - 65
  • [29] Conformal vector fields on submanifolds of a Euclidean space
    Alohali, Hanan
    Alodan, Haila
    Deshmukh, Sharief
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2017, 91 (1-2): : 217 - 233
  • [30] Reducibility of complex submanifolds of the complex euclidean space
    Antonio J. Di Scala
    Mathematische Zeitschrift, 2000, 235 : 251 - 257