OPTICAL PROPERTIES OF ATOMS AND DIATOMIC MOLECULES CALCULATED BY A TIME-DEPENDENT COUPLED HARTREE-FOCK METHOD

被引:46
|
作者
EPSTEIN, IR
机构
来源
JOURNAL OF CHEMICAL PHYSICS | 1970年 / 53卷 / 05期
关键词
D O I
10.1063/1.1674265
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页码:1881 / &
相关论文
共 50 条
  • [41] Extension of the continuum time-dependent Hartree-Fock method to proton states
    Pardi, C. I.
    Stevenson, P. D.
    Xu, K.
    PHYSICAL REVIEW E, 2014, 89 (03):
  • [42] NONLINEAR OPTICAL-PROPERTIES OF PARA-NITROANILINE - AN ABINITIO TIME-DEPENDENT COUPLED PERTURBED HARTREE-FOCK STUDY
    KARNA, SP
    PRASAD, PN
    DUPUIS, M
    JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (02): : 1171 - 1181
  • [43] TIME-DEPENDENT COUPLED HARTREE-FOCK CALCULATIONS OF TRIPLET EXCITED-STATES OF CLOSED-SHELL ATOMS
    KUNDU, B
    MUKHERJEE, PK
    CANADIAN JOURNAL OF PHYSICS, 1985, 63 (10) : 1278 - 1281
  • [44] TIME-DEPENDENT HARTREE-FOCK THEORY AND RESIDUAL INTERACTIONS
    OGUL, R
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1989, 333 (02): : 149 - 152
  • [45] TIME-DEPENDENT HARTREE-FOCK (TDHF) AS A DYNAMICAL BASIS
    LICHTNER, PC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (08): : 1004 - 1004
  • [46] TIME-DEPENDENT HARTREE-FOCK FORMALISM FOR THE DIELECTRIC FUNCTION
    BRENER, NE
    FRY, JL
    PHYSICAL REVIEW B, 1979, 19 (04): : 1720 - 1726
  • [47] NONLINEAR RESONANCE IN THE TIME-DEPENDENT HARTREE-FOCK MANIFOLD
    SAKATA, F
    KUBO, T
    MARUMORI, T
    IWASAWA, K
    HASHIMOTO, Y
    PHYSICAL REVIEW C, 1994, 50 (01): : 138 - 147
  • [48] TIME-DEPENDENT HARTREE-FOCK CALCULATIONS OF DISPERSION ENERGY
    JASZUNSKI, M
    MCWEENY, R
    MOLECULAR PHYSICS, 1985, 55 (06) : 1275 - 1286
  • [49] Implementation of time-dependent Hartree-Fock in real space
    Panta, Uday
    Strubbe, David A.
    ELECTRONIC STRUCTURE, 2024, 6 (04):
  • [50] On Blowup for Time-Dependent Generalized Hartree-Fock Equations
    Hainzl, Christian
    Lenzmann, Enno
    Lewin, Mathieu
    Schlein, Benjamin
    ANNALES HENRI POINCARE, 2010, 11 (06): : 1023 - 1052