FINITE SUM EVALUATION OF THE GAUSS HYPERGEOMETRIC FUNCTION IN AN IMPORTANT SPECIAL CASE

被引:0
|
作者
DETRICH, J
CONN, RW
机构
关键词
D O I
10.2307/2006313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:788 / 791
页数:4
相关论文
共 50 条
  • [41] Hermite-Hadamard Inequalities Involving The Gauss Hypergeometric Function
    Sarikaya, Mehmet Zeki
    7TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2018), 2018, 2037
  • [42] On some new contiguous relations for the Gauss hypergeometric function with applications
    Rakha, Medhat A.
    Rathie, Arjun K.
    Chopra, Purnima
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (03) : 620 - 629
  • [43] A simplification of Laplace's method: Applications to the Gamma function and Gauss hypergeometric function
    Lopez, Jose L.
    Pagola, Pedro
    Perez Sinusia, E.
    JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) : 280 - 291
  • [44] UNIFIED PROBABILITY DENSITY FUNCTION INVOLVING T-CONFLUENT HYPERGEOMETRIC FUNCTION AND T-GAUSS HYPERGEOMETRIC FUNCTIONS
    Agarwal, Vinita
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2024, 23 (1-2): : 63 - 71
  • [45] SPECIAL CASE OF A SUM
    BICKNELLJOHNSON, M
    FIBONACCI QUARTERLY, 1985, 23 (03): : 279 - 279
  • [46] A CHARACTER SUM EVALUATION AND GAUSSIAN HYPERGEOMETRIC-SERIES
    GREENE, J
    STANTON, D
    JOURNAL OF NUMBER THEORY, 1986, 23 (01) : 136 - 148
  • [47] ON THE EVALUATION OF THE CONFLUENT HYPERGEOMETRIC FUNCTION
    SLATER, LJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (04): : 612 - 622
  • [48] On some new inequalities and fractional kinetic equations associated with extended gauss hypergeometric and confluent hypergeometric function
    Chandola, Ankita
    Pandey, Rupakshi Mishra
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2023, 15 (01):
  • [49] Special values of hypergeometric functions over finite fields
    Ron Evans
    Frank Lam
    The Ramanujan Journal, 2009, 19 : 151 - 162
  • [50] Integral Inequalities Associated with Gauss Hypergeometric Function Fractional Integral Operators
    R. K. Saxena
    S. D. Purohit
    Dinesh Kumar
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88 : 27 - 31