A machine learning approach for time series forecasting with application to debt risk of the Montenegrin electricity industry

被引:0
|
作者
Dukanovic, Milena [1 ]
Kascelan, Ljiljana [2 ]
Vukovic, Suncica [2 ]
Martinovic, Ivan [1 ]
Calasan, Martin [1 ]
机构
[1] Univ Montenegro, Fac Elect Engn, Dzordza Vasingtona bb, Podgorica 81000, Montenegro
[2] Univ Montenegro, Fac Econ, Jovana Tomasevica 37, Podgorica 81000, Montenegro
关键词
Electricity debt prediction; Support vector regression; Time series forecasting; Montenegro;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Level of customer electricity debts is a relevant information for the electricity production company, as it represents uncollected revenue for the provided service. Higher level of debts may affect the provider's financial stability and the ability to invest and maintain their network. On the other hand, high levels of debt may indicate larger macroeconomic problems, such as the lower standard of the citizens or high unemployment. In this paper, a Machine Learning approach for electricity debt prediction was applied, using Support Vector Regression method and data from the Montenegrin electricity provider. The obtained results indicate an excellent model performance, proving that the chosen method is an outstanding choice for this task, compared to other machine learning methods. The forecast of electricity user debts using machine learning techniques adds a new research area to the existing research, as the previous literature mostly concentrated on the prediction of electric load, consumption, and demand. The risk of default may be larger in lower income nations, as is the case in this research, therefore risk prediction and mitigation are crucial for the power supplier in these countries. The results obtained in this research on the test set are 1.63% and 0.854, for Relative Error and R2, respectively, showing excellent predictive performance. Additionally, correlation coefficient is close to 1 in cross-validation and on unknown data. Thus, it can be confirmed that the debt prediction was efficient. & COPY; 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:362 / 369
页数:8
相关论文
共 50 条
  • [31] Review on deep learning models for time series forecasting in industry
    Li X.-R.
    Ban X.-J.
    Yuan Z.-L.
    Qiao H.-R.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (04): : 757 - 766
  • [32] Production fault simulation and forecasting from time series data with machine learning in glove textile industry
    Seckin, Mine
    Seckin, Ahmet Cagdas
    Coskun, Aysun
    JOURNAL OF ENGINEERED FIBERS AND FABRICS, 2019, 14
  • [33] Time Series Forecasting Based on Deep Extreme Learning Machine
    Guo, Xuqi
    Pang, Yusong
    Yan, Gaowei
    Qiao, Tiezhu
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6151 - 6156
  • [34] Hyperparameters Tuning for Machine Learning Models for Time Series Forecasting
    Peter, Gladilin
    Matskevichus, Maria
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2019, : 328 - 332
  • [35] A survey on machine learning models for financial time series forecasting
    Tang, Yajiao
    Song, Zhenyu
    Zhu, Yulin
    Yuan, Huaiyu
    Hou, Maozhang
    Ji, Junkai
    Tang, Cheng
    Li, Jianqiang
    NEUROCOMPUTING, 2022, 512 : 363 - 380
  • [36] Vector SHAP Values for Machine Learning Time Series Forecasting
    Choi, Ji Eun
    Shin, Ji Won
    Shin, Dong Wan
    JOURNAL OF FORECASTING, 2025, 44 (02) : 635 - 645
  • [37] Forecasting Field Production Using Machine Learning Time Series
    Awad, Johnny Sawma
    Assaf, Sena
    Safa, Bassel
    Srour, Issam
    CONSTRUCTION RESEARCH CONGRESS 2022: COMPUTER APPLICATIONS, AUTOMATION, AND DATA ANALYTICS, 2022, : 77 - 86
  • [38] Machine-Learning Models for Sales Time Series Forecasting
    Pavlyshenko, Bohdan M.
    DATA, 2019, 4 (01)
  • [39] Ensemble Machine Learning for Monkeypox Transmission Time Series Forecasting
    Dada, Emmanuel Gbenga
    Oyewola, David Opeoluwa
    Joseph, Stephen Bassi
    Emebo, Onyeka
    Oluwagbemi, Olugbenga Oluseun
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [40] DeepTSF: Codeless machine learning operations for time series forecasting
    Pelekis, Sotiris
    Pountridis, Theodosios
    Kormpakis, Georgios
    Lampropoulos, George
    Karakolis, Evangelos
    Mouzakitis, Spiros
    Askounis, Dimitris
    SOFTWAREX, 2024, 27