SASAKI METRIC ON THE TANGENT BUNDLE OF A WEYL MANIFOLD

被引:3
|
作者
Bejan, Cornelia-Livia [1 ]
Gul, Ilhan [2 ]
机构
[1] Gh Adachi Tech Univ, Dept Math, Iasi, Romania
[2] Istanbul Tech Univ, Dept Math, Istanbul, Turkey
来源
关键词
tangent bundle; Sasaki metric; Weyl structure;
D O I
10.2298/PIM1817025B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, [g]) be a Weyl manifold of dimension m > 2. By using the Sasaki metric G induced by g, we construct a Weyl structure on T M. Then we prove that it is never Einstein-Weyl unless (M, g) is flat. The main theorem here extends to the Weyl context a result of Musso and Tricerri.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 50 条
  • [41] Lifts of a Quarter-Symmetric Metric Connection from a Sasakian Manifold to Its Tangent Bundle
    Khan, Mohammad Nazrul Islam
    De, Uday Chand
    Velimirovic, Ljubica S.
    MATHEMATICS, 2023, 11 (01)
  • [42] A STUDY OF HARMONICITY ON COTANGENT BUNDLE WITH BERGER-TYPE DEFORMED SASAKI METRIC OVER STANDARD KAHLER MANIFOLD
    Biroud, Kheireddine
    Zagane, Abderrahim
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (04): : 927 - 945
  • [43] Laplacians on the holomorphic tangent bundle of a Kaehler manifold
    ZHONG ChunPing School of Mathematical Sciences
    Science China Mathematics, 2009, (12) : 2841 - 2854
  • [44] Laplacians on the holomorphic tangent bundle of a Kaehler manifold
    ZHONG ChunPing School of Mathematical SciencesXiamen UniversityXiamen China
    ScienceinChina(SeriesA:Mathematics), 2009, 52 (12) : 2841 - 2854
  • [45] BERGER TYPE DEFORMED SASAKI METRIC ON THE COTANGENT BUNDLE
    Zagane, Abderrahim
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (03): : 575 - 592
  • [46] Structures in a differentiable manifold and their applications to the tangent bundle
    Khan, Mohammad Nazrul Islam
    Ansari, Gufran Ahmad
    Adhoni, Zameer Ahmad
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 124 - 133
  • [47] NOTES ON THE RESCALED SASAKI TYPE METRIC ON THE COTANGENT BUNDLE
    Aydin GEZER
    Murat ALTUNBAS
    ActaMathematicaScientia, 2014, 34 (01) : 162 - 174
  • [48] Structures in a differentiable manifold and their applications to the tangent bundle
    Khan, Mohammad Nazrul Islam
    Ansari, Gufran Ahmad
    Adhoni, Zameer Ahmad
    Italian Journal of Pure and Applied Mathematics, 2020, 44 : 124 - 133
  • [49] THE SCALAR CURVATURE OF THE TANGENT BUNDLE OF A FINSLER MANIFOLD
    Bejancu, Aurel
    Farran, Hani Reda
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2011, 89 (103): : 57 - 68
  • [50] Laplacians on the holomorphic tangent bundle of a Kaehler manifold
    Zhong ChunPing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (12): : 2841 - 2854