QUANTUM DISSIPATION

被引:227
|
作者
CELEGHINI, E
RASETTI, M
VITIELLO, G
机构
[1] IST NAZL FIS NUCL, FLORENCE, ITALY
[2] POLITECN TORINO, DIPARTIMENTO FIS, I-10128 TURIN, ITALY
[3] POLITECN TORINO, UNITA INFM, I-10128 TURIN, ITALY
[4] IST NAZL FIS NUCL, NAPLES, ITALY
[5] UNIV SALERNO, DIPARTIMENTO FIS, I-84100 SALERNO, ITALY
关键词
D O I
10.1016/0003-4916(92)90302-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss some aspects of dissipation in quantum field theory starting from the example of the quantum mechanical damped harmonic oscillator. We show that the set of states of the system splits into unitarily inequivalent representations of the canonical commutation relations. At quantum level the irreversibility of time evolution is expressed as tunneling among the unitarily inequivalent representations. Statistical and thermodynamical properties of the formalism are analysed and canonical quantization is shown to lead to time dependent SU(1, 1) coherent states, well known in high energy physics as well as in quantum optics and thermal field theory. © 1992.
引用
收藏
页码:156 / 170
页数:15
相关论文
共 50 条
  • [31] Quantum bouncer with quadratic dissipation
    Gonzalez, Gabriel
    REVISTA MEXICANA DE FISICA, 2008, 54 (01) : 5 - 7
  • [32] Transport and Dissipation in Quantum Pumps
    J. E. Avron
    A. Elgart
    G. M. Graf
    L. Sadun
    Journal of Statistical Physics, 2004, 116 : 425 - 473
  • [33] Quantum Turbulence and Planckian Dissipation
    G. E. Volovik
    JETP Letters, 2022, 115 : 461 - 465
  • [34] Dissipation and decoherence in a quantum register
    Zanardi, P
    PHYSICAL REVIEW A, 1998, 57 (05): : 3276 - 3284
  • [35] Determinism and dissipation in quantum gravity
    't Hooft, G
    BASICS AND HIGHLIGHTS IN FUNDAMENTAL PHYSICS, 2001, 37 : 397 - 430
  • [36] QUANTUM DISSIPATION FOR THE KICKED PARTICLE
    COHEN, D
    FISHMAN, S
    PHYSICAL REVIEW A, 1989, 39 (12): : 6478 - 6490
  • [37] INFLUENCE OF DISSIPATION ON QUANTUM COHERENCE
    BRAY, AJ
    MOORE, MA
    PHYSICAL REVIEW LETTERS, 1982, 49 (21) : 1545 - 1549
  • [38] Completely positive quantum dissipation
    Vacchini, B
    PHYSICAL REVIEW LETTERS, 2000, 84 (07) : 1374 - 1377
  • [39] Controlling dissipation in quantum devices
    Leburton, JP
    LyandaGeller, Y
    COMPOUND SEMICONDUCTORS 1995, 1996, 145 : 839 - 844
  • [40] Classifying quantum data by dissipation
    Marshall, Jeffrey
    Venuti, Lorenzo Campos
    Zanardi, Paolo
    PHYSICAL REVIEW A, 2019, 99 (03)