A NOTE ON BOUNDS ON THE MINIMUM AREA OF CONVEX LATTICE POLYGONS

被引:4
|
作者
COLBOURN, CJ [1 ]
SIMPSON, RJ [1 ]
机构
[1] CURTIN UNIV TECHNOL,SCH MATH & STAT,PERTH,WA 6001,AUSTRALIA
关键词
D O I
10.1017/S0004972700030094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The minimum area a(v) of a v-sided convex lattice polygon is known to satisfy (v/2) less-than-or-equal-to a(2v) less-than-or-equal-to (v/3) -v+1. We conjecture that a(v) = cv3 + o(v3), for c a constant; we prove that a(v) less-than-or-equal-to (15/784)v3 + o(v3), and that for some positive constant c, a(v) greater-than-or-equal-to cv2.5.
引用
收藏
页码:237 / 240
页数:4
相关论文
共 50 条
  • [31] UNIDIRECTIONAL-CONVEX POLYGONS ON THE HONEYCOMB LATTICE
    LIN, KY
    WU, FY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21): : 5003 - 5010
  • [32] Multifold Tiles of Polyominoes and Convex Lattice Polygons
    Chida, Kota
    Demaine, Erik D.
    Demaine, Martin L.
    Eppstein, David
    Hesterberg, Adam
    Horiyama, Takashi
    Iacono, John
    Ito, Hiro
    Langerman, Stefan
    Uehara, Ryuhei
    Uno, Yushi
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (04): : 957 - 978
  • [33] Large deviations in the geometry of convex lattice polygons
    A. Vershik
    O. Zeitouni
    Israel Journal of Mathematics, 1999, 109 : 13 - 27
  • [34] Large deviations in the geometry of convex lattice polygons
    Vershik, A
    Zeitouni, O
    ISRAEL JOURNAL OF MATHEMATICS, 1999, 109 (1) : 13 - 27
  • [35] APPROXIMATING MINIMUM-AREA RECTANGULAR AND CONVEX CONTAINERS FOR PACKING CONVEX POLYGONS (vol 8, pg 1, 2017)
    Alt, Helmut
    de Berg, Mark
    Knauer, Christian
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2020, 11 (01) : 653 - 655
  • [36] MINIMUM VERTEX DISTANCE BETWEEN SEPARABLE CONVEX POLYGONS
    CHIN, F
    WANG, CA
    INFORMATION PROCESSING LETTERS, 1984, 18 (01) : 41 - 45
  • [37] FINDING THE MINIMUM DISTANCE BETWEEN 2 CONVEX POLYGONS
    SCHWARTZ, JT
    INFORMATION PROCESSING LETTERS, 1981, 13 (4-5) : 168 - 170
  • [38] Tight Bounds on the Maximal Area of Small Polygons: Improved Mossinghoff Polygons
    Christian Bingane
    Discrete & Computational Geometry, 2023, 70 : 236 - 248
  • [39] MINIMUM CONVEX POLYGONS FOR DELINEATION OF POSSIBLE VIRAL TAXA
    MATTHEWS, REF
    JOURNAL OF GENERAL VIROLOGY, 1977, 36 (JUL): : 41 - 50
  • [40] PERIMETER AND AREA GENERATING-FUNCTIONS OF THE STAIRCASE AND ROW-CONVEX POLYGONS ON THE RECTANGULAR LATTICE
    LIN, KY
    TZENG, WJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1991, 5 (11): : 1913 - 1925