ON THE NILPOTENT LEIBNIZ-POISSON ALGEBRAS

被引:1
|
作者
Ratseev, S. M. [1 ]
Cherevatenko, O. I. [2 ]
机构
[1] Ulyanovsk State Univ, Dept Informat Secur & Control Theory, 42 L Tolstogo St, Ulyanovsk 432970, Russia
[2] Ulyanovsk State Pedag Univ, Dept Higher Math, Ulyanovsk 432700, Russia
关键词
Leibniz algebra; Leibniz-Poisson algebra; variety of algebras;
D O I
10.14498/vsgtu1075
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article Leibniz and Leibniz-Poisson algebras in terms of correctness of different identities are investigated. We also examine varieties of these algebras. Let K be a base field of characteristics zero. It is well known that in this case all information about varieties of linear algebras V contains in its polylinear components P-n (V), n is an element of N, where P-n (V) is a linear span of polylinear words of n different letters in a free algebra K (X, V). In this article we give algebra constructions that generate class of nilpotent varieties of Leibniz algebras and also algebra constructions that generate class of nilpotent by Leibniz varieties of Leibniz-Poisson algebras with the identity {x(1), x(2)} . {x(3), x(4)} = 0.
引用
收藏
页码:207 / 211
页数:5
相关论文
共 50 条
  • [31] On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras
    Kurdachenko, Leonid A.
    Semko, Mykola M.
    Subbotin, Igor Ya.
    ALGEBRA AND DISCRETE MATHEMATICS, 2024, 37 (02): : 244 - 261
  • [32] Almost Inner Derivations of Some Nilpotent Leibniz Algebras
    Adashev, Zhobir K.
    Kurbanbaev, Tuuelbay K.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (06): : 733 - 745
  • [33] The growth of varieties of Leibniz algebras with Nilpotent commutator subalgebra
    Ratseev, S. M.
    MATHEMATICAL NOTES, 2007, 82 (1-2) : 96 - 103
  • [34] On classification of four-dimensional nilpotent Leibniz algebras
    Demir, Ismail
    Misra, Kailash C.
    Stitzinger, Ernie
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (03) : 1012 - 1018
  • [35] The growth of varieties of Leibniz algebras with nilpotent commutator subalgebra
    S. M. Ratseev
    Mathematical Notes, 2007, 82 : 96 - 103
  • [36] The algebraic classification and degenerations of nilpotent Poisson algebras
    Abdelwahab, Hani
    Barreiro, Elisabete
    Calderon, Antonio J.
    Fernandez Ouaridi, Amir
    JOURNAL OF ALGEBRA, 2023, 615 : 243 - 277
  • [37] The Classification of Non-Characteristically Nilpotent Filiform Leibniz Algebras
    Khudoyberdiyev, A. K.
    Ladra, M.
    Omirov, B. A.
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) : 945 - 969
  • [38] Complexity functions of varieties of Leibniz algebras with nilpotent commutator subalgebra
    Ratseev, S. M.
    MATHEMATICAL NOTES, 2015, 98 (3-4) : 525 - 528
  • [39] Complexity functions of varieties of Leibniz algebras with nilpotent commutator subalgebra
    S. M. Ratseev
    Mathematical Notes, 2015, 98 : 525 - 528
  • [40] Automorphisms of free left nilpotent leibniz algebras and fixed points
    Drensky, V
    Papistas, AI
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) : 2957 - 2975