ON THE NILPOTENT LEIBNIZ-POISSON ALGEBRAS

被引:1
|
作者
Ratseev, S. M. [1 ]
Cherevatenko, O. I. [2 ]
机构
[1] Ulyanovsk State Univ, Dept Informat Secur & Control Theory, 42 L Tolstogo St, Ulyanovsk 432970, Russia
[2] Ulyanovsk State Pedag Univ, Dept Higher Math, Ulyanovsk 432700, Russia
关键词
Leibniz algebra; Leibniz-Poisson algebra; variety of algebras;
D O I
10.14498/vsgtu1075
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article Leibniz and Leibniz-Poisson algebras in terms of correctness of different identities are investigated. We also examine varieties of these algebras. Let K be a base field of characteristics zero. It is well known that in this case all information about varieties of linear algebras V contains in its polylinear components P-n (V), n is an element of N, where P-n (V) is a linear span of polylinear words of n different letters in a free algebra K (X, V). In this article we give algebra constructions that generate class of nilpotent varieties of Leibniz algebras and also algebra constructions that generate class of nilpotent by Leibniz varieties of Leibniz-Poisson algebras with the identity {x(1), x(2)} . {x(3), x(4)} = 0.
引用
收藏
页码:207 / 211
页数:5
相关论文
共 50 条
  • [1] Noncommutative Leibniz-Poisson algebras
    Casas, J. M.
    Datuashvili, T.
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (07) : 2507 - 2530
  • [2] COMPLEXITY FUNCTIONS OF SOME LEIBNIZ-POISSON ALGEBRAS
    Ratseev, S. M.
    Cherevatenko, O., I
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 500 - 507
  • [3] ON SOME VARIETIES OF LEIBNIZ-POISSON ALGEBRAS WITH EXTREME PROPERTIES
    Ratseev, S. M.
    Cherevatenko, O., I
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2013, (22): : 57 - 59
  • [4] Necessary and Sufficient Conditions of Polynomial Growth of Varieties of Leibniz-Poisson Algebras
    Ratseev, S. M.
    RUSSIAN MATHEMATICS, 2014, 58 (03) : 26 - 30
  • [5] On Varieties of Leibniz-Poisson Algebras with the Identity {x, y} . {z, t} = 0
    Ratseev, Sergey M.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2013, 6 (01): : 97 - 104
  • [6] ON LEIBNIZ-POISSON SPECIAL POLYNOMIAL IDENTITIES
    Ratseev, S. M.
    Cherevatenko, O. I.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2014, (02): : 9 - 15
  • [7] A Characterization of Nilpotent Leibniz Algebras
    Alice Fialowski
    A. Kh. Khudoyberdiyev
    B. A. Omirov
    Algebras and Representation Theory, 2013, 16 : 1489 - 1505
  • [8] On nilpotent and simple Leibniz algebras
    Albeverio, S
    Ayupov, SA
    Omirov, BA
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (01) : 159 - 172
  • [9] A Characterization of Nilpotent Leibniz Algebras
    Fialowski, Alice
    Khudoyberdiyev, A. Kh.
    Omirov, B. A.
    ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (05) : 1489 - 1505
  • [10] NILPOTENT LIE AND LEIBNIZ ALGEBRAS
    Ray, Chelsie Batten
    Combs, Alexander
    Gin, Nicole
    Hedges, Allison
    Hird, J. T.
    Zack, Laurie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2404 - 2410