GENOME COMPLEXITY ANALYSIS .1. COMPLEXITY-MEASURES AND THE CLASSIFICATION OF STRUCTURAL FEATURES

被引:0
|
作者
GUSEV, VD [1 ]
KULICHKOV, VA [1 ]
CHUPAKHINA, OM [1 ]
机构
[1] MINIST MED IND USSR,MOLEC BIOL RES INST,SCI ENTERPRISE VEKTOR,NOVOSIBIRSK 633159,USSR
关键词
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A new method for detecting local structural features in nucleic acid primary structures is described. The method is based on the concepts of the complexity and the complexity profile of a finite sequence. This measure of complexity reflects specific features of genetic texts and, especially the features of repeats, symmetries, and complementarity. Efficient algorithms and programs are developed for analysis of long genomes. The results of analyses of a variety of genomes were used to classify the structural features identified.
引用
收藏
页码:669 / 677
页数:9
相关论文
共 50 条
  • [41] Industrial Exoskeleton Technology: Classification, Structural Analysis, and Structural Complexity Indicator
    Voilque, A.
    Masood, J.
    Fauroux, J. C.
    Sabourin, L.
    Guezet, O.
    2019 WEARABLE ROBOTICS ASSOCIATION CONFERENCE (WEARRACON), 2019, : 13 - 20
  • [42] Measures of complexity in signal analysis
    Kurths, J
    Schwarz, U
    Witt, A
    Krampe, RT
    Abel, M
    CHAOTIC, FRACTAL, AND NONLINEAR SIGNAL PROCESSING, 1996, (375): : 33 - 54
  • [43] Data Complexity Measures for Imbalanced Classification Tasks
    Barella, Victor H.
    Garcia, Luis P. F.
    de Souto, Marcilio P.
    Lorena, Ana C.
    de Carvalho, Andre
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [44] An insight on complexity measures and classification in microarray data
    Bolon-Canedo, Veronica
    Moran-Fernandez, Laura
    Alonso-Betanzos, Amparo
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [45] Structural complexity biases vegetation greenness measures
    Zeng, Yelu
    Hao, Dalei
    Park, Taejin
    Zhu, Peng
    Huete, Alfredo
    Myneni, Ranga
    Knyazikhin, Yuri
    Qi, Jianbo
    Nemani, Ramakrishna R.
    Li, Fa
    Huang, Jianxi
    Gao, Yongyuan
    Li, Baoguo
    Ji, Fujiang
    Koehler, Philipp
    Frankenberg, Christian
    Berry, Joseph A.
    Chen, Min
    NATURE ECOLOGY & EVOLUTION, 2023, 7 (11) : 1790 - 1798
  • [46] Structural complexity biases vegetation greenness measures
    Yelu Zeng
    Dalei Hao
    Taejin Park
    Peng Zhu
    Alfredo Huete
    Ranga Myneni
    Yuri Knyazikhin
    Jianbo Qi
    Ramakrishna R. Nemani
    Fa Li
    Jianxi Huang
    Yongyuan Gao
    Baoguo Li
    Fujiang Ji
    Philipp Köhler
    Christian Frankenberg
    Joseph A. Berry
    Min Chen
    Nature Ecology & Evolution, 2023, 7 : 1790 - 1798
  • [47] Visual features of intermediate complexity and their use in classification
    Ullman, S
    Vidal-Naquet, M
    Sali, E
    NATURE NEUROSCIENCE, 2002, 5 (07) : 682 - 687
  • [48] Visual features of intermediate complexity and their use in classification
    Shimon Ullman
    Michel Vidal-Naquet
    Erez Sali
    Nature Neuroscience, 2002, 5 : 682 - 687
  • [49] Intermediate complexity features support object classification
    Harel, A
    Ullman, S
    Epshtein, B
    Bentin, S
    REVIEWS IN THE NEUROSCIENCES, 2005, 16 : S29 - S29
  • [50] Structural and operational complexity of the Geobacter sulfurreducens genome
    Qiu, Yu
    Cho, Byung-Kwan
    Park, Young Seoub
    Lovley, Derek
    Palsson, Bernhard O.
    Zengler, Karsten
    GENOME RESEARCH, 2010, 20 (09) : 1304 - 1311