Nonlinear predictive model selection and model averaging using information criteria

被引:26
|
作者
Gu, Yuanlin [1 ]
Wei, Hua-Liang [1 ]
Balikhin, Michael M. [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Model selection; model averaging; data-driven modelling; system identification; information criterion;
D O I
10.1080/21642583.2018.1496042
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the model selection and model averaging problems in system identification and data-driven modelling for nonlinear systems. Given a set of data, the objective of model selection is to evaluate a series of candidate models and determine which one best presents the data. Three commonly used criteria, namely, Akaike information criterion, Bayesian information criterion and an adjustable prediction error sum of squares (APRESS) are investigated and their performance in model selection and model averaging is evaluated via a number of case studies using both simulation and real data. The results show that APRESS produces better models in terms of generalization performance and model complexity.
引用
收藏
页码:319 / 328
页数:10
相关论文
共 50 条
  • [31] Model selection rates of information based criteria
    Chaurasia, Ashok
    Harel, Ofer
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 2762 - 2793
  • [32] A comparative study of information criteria for model selection
    Nakamura, Tomomichi
    Judd, Kevin
    Mees, Alistair I.
    Small, Michael
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (08): : 2153 - 2175
  • [33] Information Criteria in Model Selection for Mixing Processes
    Masayuki Uchida
    Nakahiro Yoshida
    Statistical Inference for Stochastic Processes, 2001, 4 (1) : 73 - 98
  • [34] Selection of a barley yield model using information-theoretic criteria
    Jasieniuk, Marie
    Taper, Mark L.
    Wagner, Nicole C.
    Stougaard, Robert N.
    Brelsford, Monica
    Maxwell, Bruce D.
    WEED SCIENCE, 2008, 56 (04) : 628 - 636
  • [35] Model selection for penalized spline smoothing using akaike information criteria
    Wager, Carrie
    Vaida, Florin
    Kauermann, Goeran
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2007, 49 (02) : 173 - 190
  • [36] PREDICTIVE MODEL SELECTION CRITERIA FOR BAYESIAN LASSO REGRESSION
    Kawano, Shuichi
    Hoshina, Ibuki
    Shimamura, Kaito
    Konishi, Sadanori
    JOURNAL JAPANESE SOCIETY OF COMPUTATIONAL STATISTICS, 2015, 28 (01): : 67 - 82
  • [37] Forecast combination and model averaging using predictive measures
    Eklund, Jana
    Karlsson, Sung
    ECONOMETRIC REVIEWS, 2007, 26 (2-4) : 329 - 363
  • [38] Model averaging in predictive regressions
    Liu, Chu-An
    Kuo, Biing-Shen
    ECONOMETRICS JOURNAL, 2016, 19 (02): : 203 - 231
  • [39] Improved information criteria for Bayesian model averaging in lattice field theory
    Neil, Ethan T.
    Sitison, Jacob W.
    PHYSICAL REVIEW D, 2024, 109 (01)
  • [40] Model Selection Criteria Using Divergences
    Toma, Aida
    ENTROPY, 2014, 16 (05): : 2686 - 2698