MATHEMATICAL-MODELING OF CATCHMENT MORPHOLOGY IN THE KARST OF GUIZHOU, CHINA

被引:0
|
作者
MING, T
机构
来源
ZEITSCHRIFT FUR GEOMORPHOLOGIE | 1992年 / 36卷 / 01期
关键词
D O I
暂无
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This paper establishes statistical relationships describing the morphology of three contrasting drainage areas in the karst plateau of Guizhou. A landscape model proposed takes as its basis a two-tiered morphology: an upper tier of peaks and cols which maintains a dynamic equilibrium; and a lower tier defined by depression or valley bases which can evolve differentially in time and space. Thus equilibrium and evolutionary processes coexist in this type of karst landscape within the same timespan. The evlution of subcatchments is shown to be not necessarily the same as that of the total catchment because of tectonic factors.
引用
收藏
页码:37 / 51
页数:15
相关论文
共 50 条
  • [31] MATHEMATICAL-MODELING IN THE SCIENCES
    ROGERSON, A
    APPLICATIONS AND MODELLING IN LEARNING AND TEACHING MATHEMATICS, 1989, : 336 - 341
  • [32] MATHEMATICAL-MODELING OF MICROCIRCULATION
    FLETCHER, JE
    MATHEMATICAL BIOSCIENCES, 1978, 38 (3-4) : 159 - 202
  • [33] MATHEMATICAL-MODELING IN IMMUNOLOGY
    MARCHUK, GI
    PETROV, RV
    ZHURNAL VSESOYUZNOGO KHIMICHESKOGO OBSHCHESTVA IMENI D I MENDELEEVA, 1982, 27 (04): : 42 - 49
  • [34] CONCEPTS IN MATHEMATICAL-MODELING
    NACHEMSON, A
    POPE, MH
    SPINE, 1991, 16 (06) : 675 - 676
  • [35] Combating the Fragile Karst Environment in Guizhou,China
    Zhang Baiping Xiao Fei Wu Hongzhi Mo Shenguo Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesDatun Road Beijing ChinaEmail Zhu Shouqian Yu Lifei Forestry CollegeGuizhou UniversityGuiyang ChinaEmaih Xiong Kangning Lan Anjun Department of Resources and EnvironmentGuizhou Normal UniversityGuiyang ChinaEmail
    AMBIO-人类环境杂志, 2006, 35 (02) : 94 - 96
  • [36] MATHEMATICAL-MODELING OF FOOD EXTRUDER
    BHATTACHARYA, M
    HANNA, MA
    LEBENSMITTEL-WISSENSCHAFT & TECHNOLOGIE, 1986, 19 (01): : 34 - 38
  • [37] MATHEMATICAL-MODELING OF REACTOR STRATEGIES
    BELOSTOSKY, AM
    BELENKY, VZ
    ENERGY SOURCES, 1980, 5 (02): : 123 - 140
  • [38] INTRODUCTION REVIEW OF MATHEMATICAL-MODELING
    JACKSON, RRP
    CLINICAL PHYSICS AND PHYSIOLOGICAL MEASUREMENT, 1985, 6 (02): : 172 - 172
  • [39] MATHEMATICAL-MODELING OF DISEASE EPIDEMIOLOGY
    MICHAEL, E
    PARASITOLOGY TODAY, 1993, 9 (11): : 397 - 399
  • [40] MATHEMATICAL-MODELING OF CRYSTALLIZATION EQUIPMENT
    STRELTSOV, VV
    SUPRUNOV, NA
    SLIVCHENKO, ES
    RUMYANTSEV, MB
    INTERNATIONAL CHEMICAL ENGINEERING, 1975, 15 (02): : 216 - 218