EXISTENCE OF SOLUTIONS FOR A VARIATIONAL PROBLEM ASSOCIATED TO MODELS IN OPTIMAL FORAGING THEORY

被引:10
|
作者
BOTTERON, B
DACOROGNA, B
机构
[1] Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne
关键词
D O I
10.1016/0022-247X(90)90397-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Realistic extensions of a model by R. Arditi and B. Dacorogna (1985, Math. Biosci. 76, 127-145) in optimal foraging theory are considered. Mathematically, they correspond to minimization problems (in the calculus of variations) of convex but not coercive functionals: E(v) = ∝ g(x, v′) dx with prescribed boundary conditions and v′ ≥ β ≥ 0. Existence, uniqueness, and characterization of solutions are given. The limits of the result are discussed, in particular the case with dependence on v: g = g(x, v, v′). © 1990.
引用
收藏
页码:263 / 276
页数:14
相关论文
共 50 条
  • [41] Existence of solutions for a variational unilateral system
    Clark, Marcondes R.
    Lima, Osmundo A.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2002,
  • [42] Existence of solutions for parabolic variational inequalities
    Farah Balaadich
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 731 - 745
  • [43] EXISTENCE OF VARIATIONAL SOLUTIONS IN NONCYLINDRICAL DOMAINS
    Boegelein, Verena
    Duzaar, Frank
    Scheven, Christoph
    Singer, Thomas
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (03) : 3007 - 3057
  • [44] Stochastic Optimal Foraging Theory
    Bartumeus, Frederic
    Raposo, Ernesto P.
    Viswanathan, Gandhi M.
    da Luz, Marcos G. E.
    DISPERSAL, INDIVIDUAL MOVEMENT AND SPATIAL ECOLOGY: A MATHEMATICAL PERSPECTIVE, 2013, 2071 : 3 - 32
  • [45] IS CONVENTIONAL FORAGING THEORY OPTIMAL
    GLASSER, JW
    AMERICAN NATURALIST, 1984, 124 (06): : 900 - 905
  • [46] Existence theorems for solutions of variational inequalities
    Lai, YS
    Zhu, YG
    ACTA MATHEMATICA HUNGARICA, 2005, 108 (1-2) : 95 - 103
  • [47] Existence theorems for solutions of variational inequalities
    Yisheng Lai
    Yuanguo Zhu
    Acta Mathematica Hungarica, 2005, 108 : 95 - 103
  • [48] Existence of solutions of inverted variational inequalities
    Laszlo, Szilard
    CARPATHIAN JOURNAL OF MATHEMATICS, 2012, 28 (02) : 271 - 278
  • [49] Existence of solutions of a thermoviscoplastic model and associated optimal control problems
    Herzog, Roland
    Meyer, Christian
    Stoetzner, Ailyn
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 : 75 - 101
  • [50] On boundary optimal control problem for an arterial system: Existence of feasible solutions
    Ciro D’Apice
    Maria Pia D’Arienzo
    Peter I. Kogut
    Rosanna Manzo
    Journal of Evolution Equations, 2018, 18 : 1745 - 1786