EXISTENCE OF SOLUTIONS FOR A VARIATIONAL PROBLEM ASSOCIATED TO MODELS IN OPTIMAL FORAGING THEORY

被引:10
|
作者
BOTTERON, B
DACOROGNA, B
机构
[1] Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne
关键词
D O I
10.1016/0022-247X(90)90397-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Realistic extensions of a model by R. Arditi and B. Dacorogna (1985, Math. Biosci. 76, 127-145) in optimal foraging theory are considered. Mathematically, they correspond to minimization problems (in the calculus of variations) of convex but not coercive functionals: E(v) = ∝ g(x, v′) dx with prescribed boundary conditions and v′ ≥ β ≥ 0. Existence, uniqueness, and characterization of solutions are given. The limits of the result are discussed, in particular the case with dependence on v: g = g(x, v, v′). © 1990.
引用
收藏
页码:263 / 276
页数:14
相关论文
共 50 条