Robustness of Fuzzy Reasoning Based on Schweizer-Sklar Interval-valued t-Norms

被引:7
|
作者
Luo, Min-Xia [1 ]
Cheng, Ze [1 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Schweizer-Sklar interval-valued operator; Interval-valued fuzzy connective; Interval-valued fuzzy inference; Robustness;
D O I
10.1016/j.fiae.2016.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we focus on the parametric triple I algorithms by the combination of Schweizer-Sklar interval-valued operators and triple I principles for fuzzy reasoning. Firstly, we give the interval-valued triple I solutions based on Schweizer-Sklar interval-valued operators. Then, we investigate the sensitivity of Schweizer-Sklar interval-valued fuzzy connectives. Finally, we study the robustness of the triple I algorithms based on Schweizer-Sklar interval-valued t-norms (m is an element of (0,infinity)). It shows that the quality of interval-valued fuzzy reasoning algorithms depends on the selection of interval-valued fuzzy connectives.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 50 条
  • [21] Applications of interval-valued fuzzy sub-hypernear-rings with respect to t-norms (t-conorms)
    Kazanci, Osman
    Yamak, Sultan
    AHA 2008: 10TH INTERNATIONAL CONGRESS-ALGEBRAIC HYPERSTRUCTURES AND APPLICATIONS, PROCEEDINGS, 2009, : 173 - 189
  • [22] Robustness of Interval-Valued Intuitionistic Fuzzy Reasoning Quintuple Implication Method
    Zeng, Shuiling
    Tang, Minzhi
    Sun, Qianfang
    Lei, Lixiang
    IEEE ACCESS, 2022, 10 : 8328 - 8338
  • [23] Robustness of interval-valued fuzzy inference
    Li, De-chao
    Li, Yong-ming
    Xie, Yong-jian
    INFORMATION SCIENCES, 2011, 181 (20) : 4754 - 4764
  • [24] Interval valued L-fuzzy ideals based on t-norms and t-conorms
    Jagadeesha, B.
    Srinivas, Kedukodi Babushri
    Prasad, Kuncham Syam
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (06) : 2631 - 2641
  • [25] Interval-valued Fuzzy Reasoning under Interval-valued Fuzzy Quotient Space Structure
    Zhang, Qiansheng
    Wu, Lihua
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (06): : 2535 - 2538
  • [26] MADM Based on Generalized Interval Neutrosophic Schweizer-Sklar Prioritized Aggregation Operators
    Khan, Qaisar
    Abdullah, Lazim
    Mahmood, Tahir
    Naeem, Muhammad
    Rashid, Saima
    SYMMETRY-BASEL, 2019, 11 (10):
  • [27] INTERVAL-VALUED FUZZY BACKWARD REASONING
    ARNOULD, T
    TANO, S
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1995, 3 (04) : 425 - 437
  • [28] INTERVAL-VALUED INTUITIONISTIC FUZZY SUBSEMIMODULES WITH (S,T)-NORMS
    Hedayati, H.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, (27): : 157 - 166
  • [29] Interval-valued intuitionistic fuzzy TODIM method based on Schweizer–Sklar power aggregation operators and their applications to group decision making
    Divya Zindani
    Saikat Ranjan Maity
    Sumit Bhowmik
    Soft Computing, 2020, 24 : 14091 - 14133
  • [30] An extended picture fuzzy MULTIMOORA method based on Schweizer-Sklar aggregation operators
    Tian, Chao
    Peng, Juan Juan
    Zhang, Zhi Qiang
    Wang, Jian Qiang
    Goh, Mark
    SOFT COMPUTING, 2022, 26 (07) : 3435 - 3454