Oil demand forecasting for India using artificial neural network

被引:0
|
作者
Jebaraj, S. [1 ]
Iniyan, S. [2 ]
机构
[1] Univ Teknol PETRONAS, Dept Mech Engn, Perak, Malaysia
[2] Anna Univ, Dept Mech Engn, Madras, Tamil Nadu, India
关键词
oil consumption; demand forecasting; forecasting models; ANN; artificial neural network; model simulation;
D O I
10.1504/IJGEI.2015.070280
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Energy is a vital input for the growth of any nation. Since oil resource has become a vital factor for future developments of a country, a system of models has to be developed to provide forecasts of oil demands in various sectors. This analysis utilises regression techniques, double moving average method, double exponential smoothing method, triple exponential smoothing method, Autoregressive Integrated Moving Average (ARIMA) model and Artificial Neural Network (ANN) model (univariate and multivariate) for oil demand forecasts in India. Model validation is done to select the best forecasting model. It is found that the ANN model gives better results in most of the cases. Hence, it is suggested that the ANN model can be used for forecasting oil demands in India. It is also predicted that the total oil demand for the years 2020 and 2030 will be 415,373 and 720,688 thousand tonnes, respectively.
引用
收藏
页码:322 / 341
页数:20
相关论文
共 50 条
  • [41] Forecasting net energy consumption using artificial neural network
    Soezen, Adnan
    Akcayol, M. Ali
    Arcaklioglu, Erol
    ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2006, 1 (02) : 147 - 155
  • [43] Mobile Network Traffic Forecasting Using Artificial Neural Networks
    Kirmaz, Anil
    Michalopoulos, Diomidis S.
    Balan, Irina
    Gerstacker, Wolfgang
    2020 IEEE 28TH INTERNATIONAL SYMPOSIUM ON MODELING, ANALYSIS, AND SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS (MASCOTS 2020), 2020, : 70 - +
  • [44] Air compressor load forecasting using artificial neural network
    Wu, Da-Chun
    Bahrami Asl, Babak
    Razban, Ali
    Chen, Jie
    Razban, Ali (arazban@iupui.edu), 1600, Elsevier Ltd (168):
  • [45] FORECASTING LAND SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORK
    Nimish, G.
    Bharath, H. A.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4387 - 4390
  • [46] ELECTRIC-LOAD FORECASTING USING AN ARTIFICIAL NEURAL NETWORK
    PARK, DC
    ELSHARKAWI, MA
    MARKS, RJ
    ATLAS, LE
    DAMBORG, MJ
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1991, 6 (02) : 442 - 449
  • [47] Streamflow forecasting using different artificial neural network algorithms
    Kisi, Oezguer
    JOURNAL OF HYDROLOGIC ENGINEERING, 2007, 12 (05) : 532 - 539
  • [48] Short term load forecasting using artificial neural network
    Banda, E.
    Folly, K. A.
    2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, : 108 - 112
  • [49] Forecasting watermain failure using artificial neural network modelling
    Asnaashari, Ahmad
    McBean, Edward A.
    Gharabaghi, Bahram
    Tutt, Donald
    CANADIAN WATER RESOURCES JOURNAL, 2013, 38 (01) : 24 - 33
  • [50] Forecasting Paint Products Using Artificial Neural Network Algorithm
    Hadiansyah, A.
    Sumitra, I. D.
    2ND INTERNATIONAL CONFERENCE ON INFORMATICS, ENGINEERING, SCIENCE, AND TECHNOLOGY (INCITEST 2019), 2019, 662