A NOTE ON MOTT-SMITHS SOLUTION OF THE BOLTZMANN EQUATION FOR A SHOCK WAVE

被引:31
|
作者
SAKURAI, A
机构
关键词
D O I
10.1017/S0022112057000622
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:255 / 260
页数:6
相关论文
共 50 条
  • [21] SOUND AND SHOCK-WAVE PROPAGATIONS BY THE SEMIDISCRETE BOLTZMANN-EQUATION
    LONGO, E
    MONACO, R
    PLATKOWSKI, T
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1988, 7 (03): : 233 - 243
  • [22] Study of a shock wave structure in gas mixtures on the basis of the Boltzmann equation
    Raines, A
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2002, 21 (05) : 599 - 610
  • [23] Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave
    A. Kh. Khachatryan
    Kh. A. Khachatryan
    Theoretical and Mathematical Physics, 2016, 189 : 1609 - 1623
  • [24] Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels
    Kloss, Yu. Yu.
    Tcheremissine, F. G.
    Shuvalov, P. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (06) : 1093 - 1103
  • [25] Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels
    Yu. Yu. Kloss
    F. G. Tcheremissine
    P. V. Shuvalov
    Computational Mathematics and Mathematical Physics, 2010, 50 : 1093 - 1103
  • [26] NOTE ON THE INVERSION OF THE BOLTZMANN EQUATION
    ROTT, N
    PHYSICS OF FLUIDS, 1964, 7 (04) : 559 - 561
  • [27] A note on the travelling wave solution to the perturbed Burgers' equation
    Demiray, H
    APPLIED MATHEMATICAL MODELLING, 2002, 26 (01) : 37 - 40
  • [28] Solution of the Burgers Shock Wave Equation in PTC MathCAD
    Stepanov, Dmitrii
    Gukasyan, Aleksandr
    Kosachev, Vycheslav
    Oleynikova, Raisa
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 1088 - 1095
  • [29] SHOCK WAVE SOLUTION OF BENNEY-LUKE EQUATION
    Triki, Houria
    Yildirim, Ahmet
    Hayat, T.
    Aldossary, Omar M.
    Biswas, Anjan
    ROMANIAN JOURNAL OF PHYSICS, 2012, 57 (7-8): : 1029 - 1034
  • [30] MEAN-FREE-PATH DEFINITION IN THE MOTT-SMITH SHOCK WAVE SOLUTION
    ZIERING, S
    EK, F
    PHYSICS OF FLUIDS, 1961, 4 (06) : 765 - 766