On restriction of roots on affine T-varieties

被引:0
|
作者
Kotenkova, Polina Yu. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Dept Higher Algebra, Leninskie Gory 1, Moscow 119991, Russia
关键词
Locally nilpotent derivation; Torus action; Roots of an algebraic group; Affine Cremona group; Toric surface;
D O I
10.1007/s13366-013-0179-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a normal affine algebraic variety with a regular action of a torus T and T subset of T be a subtorus. We prove that each root of X with respect to T can be obtained by restriction of some root of X with respect to T. This allows to give an elementary proof of the description of roots of the affine Cremona group. Several results on restriction of roots in the case of a subtorus action on an affine toric variety are obtained.
引用
收藏
页码:621 / 634
页数:14
相关论文
共 50 条
  • [21] Chow groups and pseudoffective cones of complexity-one T-varieties
    Bernt Ivar Utstøl Nødland
    manuscripta mathematica, 2022, 169 : 141 - 165
  • [22] Rational Complexity-One T-Varieties Are Well-Poised
    Ilten, Nathan
    Manon, Christopher
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (13) : 4198 - 4232
  • [23] Classifying Fano complexity-one T-varieties via divisorial polytopes
    Nathan Ilten
    Marni Mishna
    Charlotte Trainor
    manuscripta mathematica, 2019, 158 : 463 - 486
  • [24] Classifying Fano complexity-one T-varieties via divisorial polytopes
    Ilten, Nathan
    Mishna, Marni
    Trainor, Charlotte
    MANUSCRIPTA MATHEMATICA, 2019, 158 (3-4) : 463 - 486
  • [25] Affine Deligne-Lusztig varieties in affine flag varieties
    Goertz, Ulrich
    Haines, Thomas J.
    Kottwitz, Robert E.
    Reuman, Daniel C.
    COMPOSITIO MATHEMATICA, 2010, 146 (05) : 1339 - 1382
  • [26] DIMENSIONS OF AFFINE DELIGNE-LUSZTIG VARIETIES IN AFFINE FLAG VARIETIES
    Goertz, Ulrich
    He, Xuhua
    DOCUMENTA MATHEMATICA, 2010, 15 : 1009 - 1028
  • [27] VARIETIES OF AFFINE MODULES
    CSAKANY, B
    ACTA SCIENTIARUM MATHEMATICARUM, 1975, 37 (1-2): : 3 - 10
  • [28] AFFINE COMPLETE VARIETIES
    KAARLI, K
    PIXLEY, A
    ALGEBRA UNIVERSALIS, 1987, 24 (1-2) : 74 - 90
  • [29] TOPOLOGY OF AFFINE VARIETIES DOMINATED BY AN AFFINE SPACE
    GURJAR, RV
    INVENTIONES MATHEMATICAE, 1980, 59 (03) : 221 - 225
  • [30] COMPUTATION OF THE VECTOR-SPACE T(1) FOR AFFINE TORIC VARIETIES
    ALTMANN, K
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 95 (03) : 239 - 259