A GENERALIZATION OF THE CHEEGER-GROMOLL SPLITTING THEOREM

被引:8
|
作者
GALLOWAY, GJ
机构
关键词
D O I
10.1007/BF01191365
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:372 / 375
页数:4
相关论文
共 50 条
  • [41] ON A KHLER VERSION OF CHEEGER-GROMOLL-PERELMAN'S SOUL THEOREM
    傅小勇
    葛剑
    Acta Mathematica Scientia, 2014, (03) : 713 - 718
  • [42] Paracontact Tangent Bundles with Cheeger–Gromoll Metric
    Ahmet Kazan
    H. Bayram. Karadağ
    Mediterranean Journal of Mathematics, 2015, 12 : 497 - 523
  • [43] A GENERALIZATION OF THE LORENTZIAN SPLITTING THEOREM
    Yun, Jong-Gug
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (03) : 647 - 653
  • [44] Erratum to: Paracontact Tangent Bundles with Cheeger–Gromoll Metric
    Ahmet Kazan
    H. Bayram Karadağ
    Mediterranean Journal of Mathematics, 2016, 13 : 883 - 884
  • [45] An equivariant generalization of the Miller splitting theorem
    Ullman, Harry E.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2012, 12 (02): : 643 - 684
  • [46] Some notes concerning Riemannian metrics of Cheeger Gromoll type
    Gezer, Aydin
    Altunbas, Murat
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (01) : 119 - 132
  • [47] On the (1, 1)-tensor bundle with Cheeger–Gromoll type metric
    AYDIN GEZER
    MURAT ALTUNBAS
    Proceedings - Mathematical Sciences, 2015, 125 : 569 - 576
  • [48] Differential as a harmonic morphism with respect to Cheeger–Gromoll-type metrics
    Wojciech Kozłowski
    Kamil Niedziałomski
    Annals of Global Analysis and Geometry, 2010, 37 : 327 - 337
  • [49] Differential as a harmonic morphism with respect to Cheeger-Gromoll-type metrics
    Kozlowski, Wojciech
    Niedzialomski, Kamil
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 37 (04) : 327 - 337
  • [50] (1,1)-Tensor sphere bundle of Cheeger–Gromoll type
    Peyghan E.
    Nourmohammadifar L.
    Tayebi A.
    Arabian Journal of Mathematics, 2017, 6 (4) : 315 - 327