ALL NEARLY PERFECT CODES ARE KNOWN

被引:4
|
作者
LINDSTROM, K [1 ]
机构
[1] UNIV TURKU,DEPT MATH,SF-20500 TURKU 50,FINLAND
来源
INFORMATION AND CONTROL | 1977年 / 35卷 / 01期
关键词
D O I
10.1016/S0019-9958(77)90519-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:40 / 47
页数:8
相关论文
共 50 条
  • [41] On kernels of perfect codes
    Heden, Olof
    DISCRETE MATHEMATICS, 2010, 310 (21) : 3052 - 3055
  • [42] ON PERFECT POSET CODES
    Panek, Luciano
    Pinheiro, Jerry Anderson
    Alves, Marcelo Muniz
    Firer, Marcelo
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (03) : 477 - 489
  • [43] On perfect integer codes
    Tamm, U
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 117 - 120
  • [44] Perfect and nearly perfect sampling of work-conserving queues
    Xiong, Yaofei
    Murdoch, Duncan J.
    Stanford, David A.
    QUEUEING SYSTEMS, 2015, 80 (03) : 197 - 222
  • [45] Perfect and nearly perfect sampling of work-conserving queues
    Yaofei Xiong
    Duncan J. Murdoch
    David A. Stanford
    Queueing Systems, 2015, 80 : 197 - 222
  • [46] Perfect and nearly perfect separation dimension of complete and random graphs
    Yuster, Raphael
    JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (11) : 786 - 805
  • [47] THE LARGEST KNOWN PERFECT NUMBER
    SMITH, HV
    MATHEMATICAL GAZETTE, 1984, 68 (443): : 57 - 57
  • [48] VACANCY SOURCE IN NEARLY PERFECT CRYSTALS
    KINO, T
    MIZUNO, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1984, 53 (10) : 3290 - 3292
  • [49] Proper Nearly Perfect Sets in Graphs
    Eslahchi, Ch.
    Maimani, H. R.
    Torabi, R.
    Tusserkani, R.
    ARS COMBINATORIA, 2016, 126 : 143 - 156
  • [50] SURVEY OF IMPERFECTIONS IN NEARLY PERFECT CRYSTALS
    SEITZ, F
    JOURNAL OF PHYSICAL CHEMISTRY, 1953, 57 (08): : 737 - 738