STOCHASTIC SIMULATION USING GPROMS

被引:14
|
作者
NAF, UG
机构
[1] Technisch-Chemisches Laboratorium, Eidgenössische Technische Hochschule Zürich
关键词
PROCESS SIMULATION; STOCHASTIC SIMULATION; MONTE CARLO METHODS; UNCERTAINTY; FLEXIBILITY;
D O I
10.1016/0098-1354(94)80121-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Stochastic simulation can be used to account for uncertainty in the design and operation of chemical processing systems. By using random numbers from probability distribution functions as uncertain input parameters, the system response is studied. This paper is concerned with the application of gPROMS, a new combined discrete/continuous modeling system, to stochastic simulation. The application of the principles of stochastic simulation to chemical engineering are shown and possible simulation modes are identified. The new random number generation module providing random functions for gPROMS is presented. It is based on random streams, allowing the use of more than one random sequence within the same simulation. Three examples of steady state and dynamic stochastic simulations are presented.
引用
收藏
页码:S743 / S747
页数:5
相关论文
共 50 条
  • [31] Simulation of anaerobic digestion processes using stochastic algorithm
    Jegathambal Palanichamy
    Sundarambal Palani
    Journal of Environmental Health Science and Engineering, 12
  • [32] Modeling and simulation of wind speed using a stochastic formulation
    Gonzalez-Longatt, Francisco M.
    Amaya, Omar
    Cooz, Marco
    Duran, Luis
    Peraza, Cesar
    Arteaga, Francisco J.
    Villanueva, Carlos
    INGENIERIA UC, 2007, 14 (03): : 7 - 15
  • [33] Acceleration of discrete stochastic biochemical simulation using GPGPU
    Sumiyoshi, Kei
    Hirata, Kazuki
    Hiroi, Noriko
    Funahashi, Akira
    FRONTIERS IN PHYSIOLOGY, 2015, 6
  • [34] Using subsystem linear regression metamodels in stochastic simulation
    Reis dos Santos, Pedro M.
    Reis dos Santos, M. Isabel
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 196 (03) : 1031 - 1040
  • [35] Modeling errors in vector data using stochastic simulation
    Zhang, Jingxiong
    Du, Daosheng
    Sun, Jiabing
    Wuhan Cehui Keji Daxue Xuebao/Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25 (01): : 49 - 54
  • [36] Stochastic simulation of patterns using Bayesian pattern modeling
    Mohammad J. Abdollahifard
    Karim Faez
    Computational Geosciences, 2013, 17 : 99 - 116
  • [37] Stochastic simulation of patterns using Bayesian pattern modeling
    Abdollahifard, Mohammad J.
    Faez, Karim
    COMPUTATIONAL GEOSCIENCES, 2013, 17 (01) : 99 - 116
  • [38] Statistical ranking of Stochastic geomodels using streamline simulation
    Gilman, James R.
    Meng, Hai-Zui
    Uland, Michael J.
    Dzurman, Peter J.
    Cosic, Stevan
    JPT, Journal of Petroleum Technology, 2003, 55 (02): : 62 - 63
  • [39] Simulation of woodyard inventory variations using a stochastic model
    LeBel, L
    Carruth, JS
    FOREST PRODUCTS JOURNAL, 1997, 47 (03) : 52 - 57
  • [40] Statistical ranking of stochastic geomodels using streamline simulation
    Denney, D
    JOURNAL OF PETROLEUM TECHNOLOGY, 2003, 55 (02): : 62 - 63