A CONJECTURED ANALOGUE OF DEDEKIND'S ETA FUNCTION FOR K3 SURFACES

被引:0
|
作者
Jorgenson, Jay [1 ]
Todorov, Andrey [2 ,3 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[3] Bulgarian Acad Sci, Inst Math, BG-1040 Sofia, Bulgaria
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A fundamental formula in the study of elliptic functions is the product formula for Dedekind's eta function or, equivalently, for the holomorphic cusp form on the upper half plane h which is of weight 12 with respect to the action by PSL(2, Z). A related formula expresses the determinant of the Laplacian which acts on the space of smooth functions on an elliptic curve with a period of the elliptic curve and the Dedekind eta function. In [JT 94a], we constructed a holomorphic function on the moduli space of marked, polarized, algebraic K3 surfaces of fixed degree using determinants of Laplacians. The aim of this article is to state a conjecture which expresses a product formula for this holomorphic form. In addition, we will present speculative relations with the representation theory of the Mathieu group M-24, as well as state many other problems currently under investigation.
引用
收藏
页码:359 / 376
页数:18
相关论文
共 50 条
  • [31] A note on elliptic K3 surfaces
    Keum, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (05) : 2077 - 2086
  • [32] MIRRORS AND INVOLUTIONS ON K3 SURFACES
    VOISIN, C
    ASTERISQUE, 1993, (218) : 273 - 323
  • [33] HYPERPLANAR SECTIONS OF K3 SURFACES
    BEAUVILLE, A
    MERINDOL, JY
    DUKE MATHEMATICAL JOURNAL, 1987, 55 (04) : 873 - 878
  • [34] On Cox rings of K3 surfaces
    Artebani, Michela
    Hausen, Juergen
    Laface, Antonio
    COMPOSITIO MATHEMATICA, 2010, 146 (04) : 964 - 998
  • [35] K3 surfaces in positive characteristic
    Maulik, Davesh
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 661 - 672
  • [36] Equivalences of twisted K3 surfaces
    Daniel Huybrechts
    Paolo Stellari
    Mathematische Annalen, 2005, 332 : 901 - 936
  • [37] Ordinary reduction of K3 surfaces
    Bogomolov, Fedor A.
    Zarhin, Yuri G.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (02): : 206 - 213
  • [38] Nodal curves on K3 surfaces
    Chen, Xi
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 168 - 173
  • [39] Good reduction of K3 surfaces
    Liedtke, Christian
    Matsumoto, Yuya
    COMPOSITIO MATHEMATICA, 2018, 154 (01) : 1 - 35
  • [40] Nikulin involutions on K3 surfaces
    Bert van Geemen
    Alessandra Sarti
    Mathematische Zeitschrift, 2007, 255 : 731 - 753