A CONJECTURED ANALOGUE OF DEDEKIND'S ETA FUNCTION FOR K3 SURFACES

被引:0
|
作者
Jorgenson, Jay [1 ]
Todorov, Andrey [2 ,3 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[3] Bulgarian Acad Sci, Inst Math, BG-1040 Sofia, Bulgaria
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A fundamental formula in the study of elliptic functions is the product formula for Dedekind's eta function or, equivalently, for the holomorphic cusp form on the upper half plane h which is of weight 12 with respect to the action by PSL(2, Z). A related formula expresses the determinant of the Laplacian which acts on the space of smooth functions on an elliptic curve with a period of the elliptic curve and the Dedekind eta function. In [JT 94a], we constructed a holomorphic function on the moduli space of marked, polarized, algebraic K3 surfaces of fixed degree using determinants of Laplacians. The aim of this article is to state a conjecture which expresses a product formula for this holomorphic form. In addition, we will present speculative relations with the representation theory of the Mathieu group M-24, as well as state many other problems currently under investigation.
引用
收藏
页码:359 / 376
页数:18
相关论文
共 50 条
  • [1] The analogue of the Dedekind eta function for CY manifolds I
    Bass, Jamey
    Todorov, Andrey
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 599 : 61 - 96
  • [2] Eta products, BPS states and K3 surfaces
    He, Yang-Hui
    Mckay, John
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [3] Eta products, BPS states and K3 surfaces
    Yang-Hui He
    John McKay
    Journal of High Energy Physics, 2014
  • [4] K3 SURFACES
    BEAUVILLE, A
    ASTERISQUE, 1983, (105-) : 217 - 229
  • [5] On K3 Surface Quotients of K3 or Abelian Surfaces
    Garbagnati, Alice
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (02): : 338 - 372
  • [6] An isoceny of K3 surfaces
    Van Geemen, B
    Top, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 : 209 - 223
  • [7] DEGENERATION OF K3 SURFACES
    NISHIGUCHI, K
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1988, 28 (02): : 267 - 300
  • [8] Families of K3 surfaces
    Borcherds, RE
    Katzarkov, L
    Pantev, T
    Shepherd-Barron, NI
    JOURNAL OF ALGEBRAIC GEOMETRY, 1998, 7 (01) : 183 - 193
  • [9] On normal K3 surfaces
    Shimada, Ichiro
    MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (02) : 395 - 416
  • [10] ON CURVES ON K3 SURFACES
    MARTENS, G
    LECTURE NOTES IN MATHEMATICS, 1989, 1389 : 174 - 182