ConvNeXt-based anchor-free object detection model for infrared image of power equipment

被引:0
|
作者
Zhang, Yiyi [1 ]
Xu, Alu [1 ]
Lan, Danquan [1 ]
Zhang, Xingtuo [1 ]
Yin, Jie [1 ]
Goh, Hui Hwang [1 ]
机构
[1] Guangxi Univ, Sch Elect Engn, Nanning 530004, Peoples R China
关键词
Power equipment infrared images; Anchor-free object detection; Feature enhancement; Label assignment;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Infrared thermography has been widely used in the monitoring and diagnosis of power equipment to ensure the reliable functioning of power systems because of its non-contact and rapid capabilities. With the promotion of intelligent detection schemes in daily patrol inspection of power equipment by utilities, the amount of infrared images of power equipment (IIOPE) is growing geometrically. The research community has begun using deep learning technology to automatically detect objects in the IIOPE. However, the performance of existing detection methods is still not satisfactory because of the inherent attributes of power equipment infrared images, such as low contrast, complex background, and multi-scale object distribution. This research proposes an anchor-free detection model based on ConvNeXt to address these issues. An enhanced feature pyramid network (FPN) is presented to address the issue of multi-scale object distribution in the IIOPE. In addition, a dynamic soft label assignment strategy is proposed for precise object localization. Extensive experimental results on the self-built IIOPE dataset and the PASCAL VOC 2007 dataset demonstrate that the proposed method yields positive results. When compared to the current anchor-based as well as anchor-free infrared image detectors for power equipment, the proposed model offers improved accuracy while ensuring the detection speed that may satisfy the practical requirements. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1121 / 1132
页数:12
相关论文
共 50 条
  • [31] Improved RepVGG-based Anchor-free Algorithm for On-road Object Detection
    Lian, Zheng
    Nie, Yiming
    Dai, Bin
    Xu, Xiaoyu
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 1082 - 1087
  • [32] Anchor-free Based Object Detection Methods and Its Application Progress in Complex Scenes
    Liu X.-B.
    Xiao X.
    Wang L.
    Cai Z.-H.
    Gong X.
    Zheng K.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (07): : 1369 - 1392
  • [33] Aligning Localization and Classification for Anchor-Free Object Detection in Aerial Imagery
    Zhang, Cong
    Ju, Yakun
    Xiao, Jun
    Yang, Yuting
    Lam, Kin-Man
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2024, 2024, 13164
  • [34] MAOD: An Efficient Anchor-Free Object Detector Based on MobileDet
    Chen, Dong
    Shen, Hao
    IEEE ACCESS, 2020, 8 : 86564 - 86572
  • [35] FCOSR: A Simple Anchor-Free Rotated Detector for Aerial Object Detection
    Li, Zhonghua
    Hou, Biao
    Wu, Zitong
    Ren, Bo
    Yang, Chen
    REMOTE SENSING, 2023, 15 (23)
  • [36] AN ORIENTATION-AWARE ANCHOR-FREE DETECTOR FOR AERIAL OBJECT DETECTION
    Duan, Mudi
    Meng, Ran
    Xiao, Liang
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3075 - 3078
  • [37] Adaptive spatial and scale label assignment for anchor-free object detection
    Dang, Min
    Liu, Gang
    Chen, Chao
    Wang, Di
    Li, Xike
    Wang, Quan
    PATTERN RECOGNITION, 2025, 164
  • [38] SAR: Single-Stage Anchor-Free Rotating Object Detection
    Lu, Junyan
    Li, Tie
    Ma, Jingyu
    Li, Zhuqiang
    Jia, Hongguang
    IEEE ACCESS, 2020, 8 (08): : 205902 - 205912
  • [39] Gaussian Aware Anchor-Free Rotated Detector for Aerial Object Detection
    Zhang, Shuai
    Zhang, Cunyuan
    Yu, Lijian
    Ji, Wenyu
    Zhi, Xiyang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [40] Fabric defect detection based on anchor-free network
    Wang, Xianbao
    Fang, Weijie
    Xiang, Sheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)