RENORMALIZATION-GROUP APPROACH TO DYNAMIC FRAGMENTATION

被引:0
|
作者
DASILVA, JKL
机构
[1] Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 30161 Belo Horizonte, MG
关键词
D O I
10.1016/0375-9601(90)90616-V
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A renormalization group to geometrical models of dynamic fragmentation in fractal and Euclidean systems is developed. The fractal dimension Δ=2B describing the irregularity and fragmentation of the system is evaluated. © 1990.
引用
收藏
页码:507 / 510
页数:4
相关论文
共 50 条
  • [41] Renormalization-group approach to ordered phases in music
    Buechele, Ryan
    Berezovsky, Jesse
    PHYSICAL REVIEW E, 2024, 110 (01)
  • [42] DIFFUSION IN A RANDOM MEDIUM - A RENORMALIZATION-GROUP APPROACH
    LUCK, JM
    NUCLEAR PHYSICS B, 1983, 225 (02) : 169 - 184
  • [43] DYNAMIC MONTE-CARLO RENORMALIZATION-GROUP METHOD
    LACASSE, MD
    VINALS, J
    GRANT, M
    PHYSICAL REVIEW B, 1993, 47 (10): : 5646 - 5652
  • [44] DYNAMIC RENORMALIZATION-GROUP THEORY OF INTERFACES - MODEL-A
    JUG, G
    JASNOW, D
    PHYSICAL REVIEW B, 1985, 31 (11): : 7385 - 7392
  • [45] RENORMALIZATION-GROUP CALCULATION OF DYNAMIC PROPERTIES FOR IMPURITY MODELS
    OLIVEIRA, LN
    LIBERO, VL
    FROTA, HO
    YOSHIDA, M
    PHYSICA B, 1991, 171 (1-4): : 61 - 68
  • [46] RENORMALIZATION-GROUP FOR AGGREGATION
    KOLB, M
    JOURNAL OF STATISTICAL PHYSICS, 1985, 39 (1-2) : 252 - 252
  • [47] OPERATOR RENORMALIZATION-GROUP
    HORN, D
    LANGEVELD, WGJ
    QUINN, HR
    WEINSTEIN, M
    PHYSICAL REVIEW D, 1988, 38 (10): : 3238 - 3247
  • [48] RENORMALIZATION-GROUP AND COCYCLES
    HIRAYAMA, M
    PHYSICS LETTERS B, 1987, 194 (01) : 97 - 102
  • [49] MICROCANONICAL RENORMALIZATION-GROUP
    CREUTZ, M
    GOCKSCH, A
    OGILVIE, M
    OKAWA, M
    PHYSICAL REVIEW LETTERS, 1984, 53 (09) : 875 - 877
  • [50] THE BOGOLYUBOV RENORMALIZATION-GROUP
    SHIRKOV, DV
    RUSSIAN MATHEMATICAL SURVEYS, 1994, 49 (05) : 155 - 176