PARANORMAL MODAL LOGIC - PART II: K-?, K AND CLASSICAL LOGIC AND OTHER PARANORMAL MODAL SYSTEMS

被引:0
|
作者
Silvestre, Ricardo S. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Philosophy, Rua Aprigio Vcloso 882, BR-58429900 Campina Grande, PB, Brazil
关键词
paraconsistent logic; paracomplete logic; modal logic; inductive plausibility;
D O I
暂无
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
In this two-part paper we present paranormal modal logic: a modal logic which is both paraconsistent and paracomplete. Besides using a general framework in which a wide range of logics - including normal modal logics, paranormal modal logics and classical logic - can be defined and proving some key theorems about paranormal modal logic (including that it is inferentially equivalent to classical normal modal logic), we also provide a philosophical justification for the view that paranormal modal logic is a formalization of the notions of skeptical and credulous plausibility.
引用
收藏
页码:89 / 130
页数:42
相关论文
共 50 条
  • [31] SYSTEMS OF MODAL LOGIC FOR IMPOSSIBLE WORLDS
    MORGAN, CG
    INQUIRY-AN INTERDISCIPLINARY JOURNAL OF PHILOSOPHY, 1973, 16 (03): : 280 - 289
  • [32] ON SYSTEMS OF MODAL LOGIC WITH PROVABILITY INTERPRETATIONS
    BOOLOS, G
    THEORIA, 1980, 46 : 7 - 18
  • [33] Proof Systems for a Godel Modal Logic
    Metcalfe, George
    Olivetti, Nicola
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, PROCEEDINGS, 2009, 5607 : 265 - +
  • [34] Deep sequent systems for modal logic
    Bruennler, Kai
    ARCHIVE FOR MATHEMATICAL LOGIC, 2009, 48 (06) : 551 - 577
  • [35] SEQUENT-SYSTEMS FOR MODAL LOGIC
    DOSEN, K
    JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (02) : 689 - 689
  • [36] Modular Sequent Systems for Modal Logic
    Bruennler, Kai
    Strassburger, Lutz
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, PROCEEDINGS, 2009, 5607 : 152 - +
  • [37] SEQUENT-SYSTEMS FOR MODAL LOGIC
    DOSEN, K
    JOURNAL OF SYMBOLIC LOGIC, 1985, 50 (01) : 149 - 168
  • [38] Deep sequent systems for modal logic
    Kai Brünnler
    Archive for Mathematical Logic, 2009, 48 : 551 - 577
  • [39] A Recursive Shortcut for CEGAR: Application to the Modal Logic K Satisfiability Problem
    Lagniez, Jean-Marie
    Le Berre, Daniel
    de Lima, Tiago
    Montmirail, Valentin
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 674 - 680
  • [40] PSPACE complexity of modal logic K D45n
    A. Birštunas
    Lithuanian Mathematical Journal, 2008, 48